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Resistance distance is a fundamental metric to measure the similarity between two nodes in graphs which has

been widely used in many real-world applications. In this paper, we study two problems on approximately

computing resistance distance: (i) single-pair query which aims at calculating the resistance distance 𝑟 (𝑠, 𝑡) for
a given pair of nodes (𝑠, 𝑡); and (ii) single-source query which is to compute all the resistance distances 𝑟 (𝑠,𝑢)
for all nodes 𝑢 in the graph with a given source node 𝑠 . Existing algorithms for these two resistance distance

query problems are often costly on large graphs. To efficiently solve these problems, we first establish several

interesting connections among resistance distance, a new concept called 𝑣-absorbed random walk, random

spanning forests, and a newly-developed 𝑣-absorbed push procedure. Based on such new connections, we

propose three novel and efficient sampling-based algorithms as well as a deterministic algorithm for single-pair

query; and we develop an online and two index-based approximation algorithms for single-source query. We

show that the two index-based algorithms for single-source query take almost the same running time as the

algorithms for single-pair query with the aid of a linear-size index. The striking feature of all our algorithms

is that they are allowed to select an easy-to-hit node by random walks on the graph. Such an easy-to-hit

landmark node 𝑣 can make the 𝑣-absorbed random walk sampling, spanning tree sampling, as well as the

𝑣-absorbed push more efficient, thus significantly improving the performance of our algorithms. Extensive

experiments on 5 real-life datasets show that our algorithms substantially outperform the state-of-the-art

algorithms for two resistance distance query problems in terms of both running time and estimation errors.

CCS Concepts: • Networks → Network algorithms; • Mathematics of computing → Probabilistic
algorithms.

Additional Key Words and Phrases: graph proximity; resistance distance; approximate algorithm

ACM Reference Format:
Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and GuorenWang. 2023. Efficient

Resistance Distance Computation: the Power of Landmark-based Approaches. Proc. ACM Manag. Data 1, 1,
Article 68 (May 2023), 27 pages. https://doi.org/10.1145/3588922

1 INTRODUCTION
Proximity measures for nodes in networks play a crucial role in many network analysis tasks.

Notable proximitymeasures include personalized PageRank [17, 23, 60], SimRank [22, 49], resistance

distance [12, 53, 57], and Katz similarity [27, 42]. All of these proximity measures can be seen as

measures based on random walks in graphs, which have been widely used in many real-world
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applications including web search [23, 57], recommendation system [25], and link predictions

[31, 46].

In this paper, we focus on the resistance distance which is a fundamental graph metric for

measuring the node similarity. Given a graph 𝐺 , we can regard it as an electrical network, where

each edge denotes a unit resistor and each node represents a junction connecting resistors. The

resistance distance between two nodes 𝑠, 𝑡 , denoted by 𝑟 (𝑠, 𝑡), is the effective resistance between 𝑠
and 𝑡 in the electrical network𝐺 . It is well-known that the resistance distance has many interesting

combinatorial explanations [8]. For example, 𝑟 (𝑠, 𝑡) can be interpreted as the commute time of a

random walk starting from 𝑠 , visiting 𝑡 , and then going back to 𝑠 [44, 53]. It can also be explained as

the normalized number of spanning 2-forests with 𝑠 and 𝑡 in two different connected components

[8, 9], where a spanning 2-forest is a spanning forest exactly containing two connected components.

Intuitively, based on these interpretations, 𝑟 (𝑠, 𝑡) is smaller (i.e., 𝑠 and 𝑡 having a short commute

time thus they are easy to hit each other, or 𝑠 and 𝑡 frequently co-occurring in the same component

of the spanning 2-forests), the more similar 𝑠 and 𝑡 are. In addition, compared to the other classic

distance metrics on graphs (e.g., shortest path), resistance distance is robust with respect to noises

(small perturbations on graphs, e.g. a few edges are removed or inserted), as it takes all paths into

consideration.

Due to such nice properties, resistance distance has been widely used in many real-world

applications, including recommendation systems [19, 26], link prediction [46], query suggestion

[41] and query expansion [57] in information retrieval, graph kernels [43, 64], oblivious routing [48],

and path planing in road networks [51]. Note that although it is argued in [54] that the resistance

distance 𝑟 (𝑠, 𝑡) is dominated by
1

𝑑𝑠
+ 1

𝑑𝑡
in large random geometric graphs, a simple correction will

lead to a useful distance metric, which is defined as 𝑟 (𝑠, 𝑡) =
√︃
𝑟 (𝑠, 𝑡) − 1

𝑑𝑠
− 1

𝑑𝑡
− ( 1

𝑑𝑠
− 1

𝑑𝑡
)2 [54].

Clearly, the key to compute 𝑟 (𝑠, 𝑡) is to calculate 𝑟 (𝑠, 𝑡). Thus, in this paper, we focus mainly on the

resistance distance computation problem. In addition, resistance distance is also widely used in

solving many theoretical problems including spectral sparsification of graphs [52], spectral graph

clustering [3], and max-flow computations [15], where approximating all-pair resistance distances

is an important primitive for accelerating computation of these problems.

Although many efforts have been made on resistance distance in both theory and applications,

there are very few studies on developing efficient algorithms to compute the resistance distance on

large graphs. Most previous algorithms to calculate the resistance distance are based on computing

the pseudo-inverse of Laplacian [8] which are very costly for large graphs. Recently, Peng et al.

[44] developed several efficient algorithms to estimate the resistance distance based on random

walk sampling, and two of them are the current state-of-the-art (SOTA) algorithms. Specifically,

their first SOTA algorithm is based on the commute time interpretation of resistance distance. To

estimate the resistance distance 𝑟 (𝑠, 𝑡), their algorithm needs to simulate round-trip random walks

from 𝑠 to 𝑡 and back to 𝑠 . Such an algorithm is very fast when 𝑟 (𝑠, 𝑡) is small. However, when 𝑟 (𝑠, 𝑡)
is large, this algorithm is inefficient because in this case, it is not easy to obtain a round-trip random

walk. Their second SOTA algorithm is based on estimating the 𝐾-step transition probability matrix

of the random walk. However, the limitation of this algorithm is that on large graphs, it requires a

large 𝐾 to achieve a good estimation accuracy, thus rendering high time overheads of the algorithm.

To overcome these issues, we propose four novel and efficient algorithms to compute the re-

sistance distance 𝑟 (𝑠, 𝑡) for a single-pair of nodes (𝑠, 𝑡), based on several interesting and newly-

established connections among resistance distance, 𝑣-absorbed random walk, spanning 2-forests,

and 𝑣-absorbed push procedure. Three of them (AbWalk, LocalTree, Bipush) are sampling-based

approximation algorithms and one of them (Push) is a deterministic algorithm. A remarkable

feature of our algorithms is that they are allowed to select a landmark node 𝑣 which can be the
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easy-to-hit node by random walks on the graph (e.g., the highest-degree node). With such a nice

feature, we can efficiently estimate 𝑟 (𝑠, 𝑡) by sampling two 𝑣-absorbed random walks from 𝑠 to 𝑣

and from 𝑡 to 𝑣 , instead of sampling round-trip random walks. Since the landmark node 𝑣 is often

easy to hit by random walks, the time overheads of simulating two 𝑣-absorbed random walks 𝑠 ⇝ 𝑣

and 𝑡 ⇝ 𝑣 are much lower than those of simulating round-trip random walks, thus the resulting

algorithm AbWalk significantly improves the efficiency of the commute time based algorithm

[44]. With a new and deep connection between resistance distance and spanning 2-forests, we

develop a novel and local spanning tree sampling algorithm LocalTree which again only requires to

simulate two random walks from both 𝑠 and 𝑡 to the landmark node 𝑣 . In addition, we also develop

a new deterministic variant of the 𝑣-absorbed random walk, called 𝑣-absorbed push. Based on the

𝑣-absorbed push procedure, we propose a new deterministic algorithm Push and a bidirectional

algorithm Bipush which integrates both 𝑣-absorbed push and 𝑣-absorbed random walk sampling

to efficiently compute 𝑟 (𝑠, 𝑡). The efficiency of these two push-based algorithms can also benefit

from the idea of selecting an easy-to-hit landmark node 𝑣 .

In applications of link prediction [46] and recommendation systems [19], we typically need to

compute the resistance distance from a given query node 𝑠 to all other nodes. To solve such a

single-source resistance distance query problem, existing algorithms [44] require to perform 𝑛 − 1

single-pair resistance distance queries, which is clearly inefficient for large graphs. To tackle this

problem, we propose a new online approximate algorithm based on sampling of random spanning

trees. Our algorithm is based on an interesting connection between the 𝑣-absorbed random walk

and the classic loop-erased random walk [61] for random spanning tree sampling (see Section 5.2

for details). We prove that the time complexity of the proposed algorithm is lower than those of

the algorithms based on processing 𝑛 − 1 single-pair queries. To further improve the efficiency, we

also develop two novel index-based approximate algorithms. We show that the running time of our

index-based algorithms for single-source query is almost the same as the algorithms for single-pair

query (with only an 𝑂 (𝑛) additional term to output the results). Moreover, our index takes only

𝑂 (𝑛) space, and it can be constructed by running only one single-source query.

We conduct extensive experiments on 5 real-life graphs to evaluate the proposed algorithms.

The results show that (1) for single-pair query, our best algorithm not only achieves more than two

orders of magnitude speedup over the SOTA algorithms [44] on large graphs, but also has much

lower estimation errors; and (2) for single-source query, our online algorithm is significantly faster

than the baseline algorithms, while the proposed index-based algorithms are at least three orders

of magnitude faster than our online algorithm. To summarize, the main contributions of this paper

are as follows.

New theoretical results.We first derive a new formula to compute the resistance distances which

relies on a selected landmark node 𝑣 . Then, based on the new formula, we establish several novel

connections among resistance distance, a new concept called 𝑣-absorbed random walk, spanning

2-forests, and a newly-proposed 𝑣-absorbed push procedure. Such novel and deep connections

provide several interesting combinatorial explanations of resistance distance, based on which we

can develop efficient algorithms to estimate the resistance distance. We believe that these novel

combinatorial explanations of resistance distance could be of independent interest.

Novel algorithms for resistance distance queries.We propose four novel algorithms to answer

the single-pair query, including a 𝑣-absorbed random walk sampling algorithm AbWalk, a local
spanning tree sampling algorithm LocalTree, a 𝑣-absorbed push algorithm Push and a bidirectional

algorithm Bipush that combines 𝑣-absorbed push and 𝑣-absorbed random walk sampling. Tabel 1

summarizes the time complexity of all the proposed algorithms as well as the state-of-the-art

algorithms for single-pair query. Except Push, all other algorithms are sampling-based approximate
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Table 1. Time Complexity of the state-of-the-art algorithms as well as the proposed algorithms for computing
𝑟 (𝑠, 𝑡). Here 𝑣 is an easy-to-hit landmark node (e.g., the highest-degree node), ℎ(𝑠, 𝑡) denotes the hitting time
from 𝑠 to 𝑡 , 𝜅 (𝑠, 𝑡) = ℎ(𝑠, 𝑡) + ℎ(𝑡, 𝑠), and 𝜅𝑣 (𝑠, 𝑡) = ℎ(𝑠, 𝑣) + ℎ(𝑡, 𝑣). Note that 𝜅𝑣 (𝑠, 𝑡) is often much smaller
than 𝜅 (𝑠, 𝑡). 𝑇 is the sample size and 𝐾 is decided by the mixing time of𝐺 [44]. To achieve a small accuracy,
𝐾 is often very large, and 𝑟max controls the accuracy of Push and Bipush.

Approximate Solutions Deterministic Solution
Algorithm Akp [44] Commute [44] AbWalk LocalTree Bipush Push

Time Complexity 𝑂 (𝑇𝐾2 ) 𝑂 (𝑇 × 𝜅 (𝑠, 𝑡 ) ) 𝑂 (𝑇 × 𝜅𝑣 (𝑠, 𝑡 ) ) 𝑂 (𝑇 × 𝜅𝑣 (𝑠, 𝑡 ) ) 𝑂 ( 𝜅𝑣 (𝑠,𝑡 )𝑟max
+𝑇 × 𝜅𝑣 (𝑠, 𝑡 ) ) 𝑂 ( 𝜅𝑣 (𝑠,𝑡 )𝑟max

)

algorithms. Push is a deterministic algorithm with an additive error bound. The time complexity of

all our algorithms relies mainly on the hitting time of the random walk from both 𝑠 and 𝑡 to the

landmark node 𝑣 , which is often lower than the commute time between 𝑠 and 𝑡 . For single-source

query, we develop three new approximate algorithms, including an online algorithm LEwalk and

two index-based algorithms AbWalk* and Push*. We show that our index-based algorithms are

extremely fast which can answer single-source queries with time costs similar to the algorithms

for answering single-pair query.

Extensive experiments. We conduct comprehensive experiments using 5 real-life graphs to

evaluate the proposed algorithms. The results show that our algorithms substantially outperform

the SOTA algorithms in terms both running time and estimation errors. In addition, we also

conduct two case studies to evaluate the effectiveness of the resistance distance related metrics.

The results show that the corrected resistance distance is indeed a very good node-similarity

metric; and the proposed techniques are very useful for computing such a resistance distance

related metric. For reproducibility purpose, the source code of this paper is released at https:

//github.com/mhliao516/Resistance-Landmark.

2 PRELIMINARIES
2.1 Problem Definition
Suppose 𝐺 = (𝑉 , 𝐸) is an undirected, connected graph with |𝑉 | = 𝑛 nodes and |𝐸 | =𝑚 edges. We

use 𝑒𝑖 to denote the unit vector where the 𝑖-th element equals 1, and the other elements are 0, we

use 𝐴 to denote the adjacency matrix of 𝐺 ; use 𝐷 to denote the degree matrix of 𝐺 , where 𝐷𝑖𝑖 = 𝑑𝑖
is the degree of node 𝑖 . Let 𝐿 = 𝐷 − 𝐴 be the Laplacian matrix of 𝐺 . Denote by 𝐿 =

∑𝑛
𝑖=1
𝜆𝑖 ®𝑢𝑖 ®𝑢𝑇𝑖

the eigen-decomposition of 𝐿, where 0 = 𝜆1 < 𝜆2 ≤ · · · ≤ 𝜆𝑛 are the eigenvalues of 𝐿 and ®𝑢𝑖 is the
eigenvector corresponding to the eigenvalue 𝜆𝑖 . Let 𝐿(𝑢 |𝑣) be the submatrix of 𝐿 after deleting the

𝑢-th row and 𝑣-th column of 𝐿. When𝑢 = 𝑣 , it is simplified as 𝐿𝑣 . Similarly, denote by 𝐿(𝑢1, 𝑣1 |𝑢2, 𝑣2)
the submatrix of 𝐿 after deleting the 𝑢1-th and 𝑣1-th row of 𝐿 and the 𝑢2-th and 𝑣2-th column of 𝐿.

To define the resistance distance, we regard the graph as an electrical network, where each edge

represents a unit resistor and each node represents a junction that connects resistors. For readers

who are unfamiliar with the concepts of electrical networks and resistance distance, we refer them

to [8, 18] which provide a comprehensive introduction to these concepts. Generally, suppose that a

unit of current flows in at 𝑠 and out at 𝑡 , we want to determine the current along all edges and the

potential on each node in𝐺 . The resistance distance 𝑟 (𝑠, 𝑡) is the potential difference between 𝑠 and
𝑡 . Let 𝑝 be the potential vector which represents each node’s potential. Then, by the Kirchhoff’s

current law (KCL) and Kirchhoff’s voltage law (KVL), we can obtain that 𝐿𝑝 = 𝑒𝑠 − 𝑒𝑡 [18]. As
a result, the resistance distance 𝑟 (𝑠, 𝑡) = 𝑝𝑠 − 𝑝𝑡 can further be derived by the Moore-Penrose

pseudo-inverse of the Laplacian matrix 𝐿† ≜
∑𝑛
𝑖=2

1

𝜆𝑖
®𝑢𝑖 ®𝑢𝑇𝑖 as follows:

𝑟 (𝑠, 𝑡) = (𝑒𝑠 − 𝑒𝑡 )𝑇𝐿† (𝑒𝑠 − 𝑒𝑡 ) = (𝐿†)𝑠𝑠 + (𝐿†)𝑡𝑡 − 2(𝐿†)𝑠𝑡 . (1)

Given a graph 𝐺 , a simple random walk on 𝐺 is a stochastic procedure where in each step a

node 𝑢 walks to a neighbor of 𝑢 with a probability
1

𝑑𝑢
, the commute time 𝜅 (𝑠, 𝑡) is defined as the
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expected number of steps of a random walk that starts at 𝑠 , visits 𝑡 , and finally comes back to 𝑠 . It

is well known that the resistance distance is closely related to the commute time of the random

walk on the graph [53].

Theorem 2.1. [53] 𝜅 (𝑠, 𝑡) = 2𝑚 × 𝑟 (𝑠, 𝑡).
Clearly, the smaller 𝑟 (𝑠, 𝑡) is, the closer 𝑠 and 𝑡 are. Moreover, the resistance distance was shown

to be a distance metric [12, 53]. Compared to the shortest path distance, resistance distance takes

all paths into consideration, thus it is often more robust. Due to such nice properties, the resistance

distance is widely used in many real-world applications, including query suggestion [41] and query

expansion [57] in information retrieval, recommendation systems [19, 26], graph kernels [43, 64],

oblivious routing [48], and path planing in road networks [51]. In those applications, it is often need

to compute the resistance distance of a pair of nodes 𝑠 and 𝑡 , or compute the resistance distance

from a source node 𝑠 to all the other nodes in 𝐺 . In this paper, we focus on both the single-pair

resistance distance query and the single-source resistance distance query problems. Formally, we

define these two problems as follows.

Definition 2.2. (Single-pair resistance distance query) Given a graph 𝐺 and a pair of nodes (𝑠, 𝑡)
with 𝑠 ≠ 𝑡 , the problem of single-pair resistance distance query is to compute the resistance distance

𝑟 (𝑠, 𝑡).
Definition 2.3. (Single-source resistance distance query) Given a graph 𝐺 and a source node 𝑠 ,

the single-source resistance distance query problem is to compute 𝑟 (𝑠,𝑢) for all 𝑢 ∈ 𝑉 .

2.2 Existing solutions and their limitations
According to the above discussions, computing the resistance distance requires solving a linear

Laplacian system 𝐿®𝑥 = ®𝑏, or equivalently computing the pseudo-inverse 𝐿† [20]. Such a linear

Laplacian system was well studied in the theoretical computer science community. Although much

progress had been made, the fastest Laplacian solver still consumes 𝑂̃ (𝑚 log𝑛), which is still very

costly for large real-world graphs (e.g., graphs with more than 1 million nodes).

Recently, several local algorithms for approximating the resistance distance are proposed in [44],

which can answer a single-pair query by only exploring a small portion of the graph. Among all the

methods proposed in [44], there are two most efficient algorithms. The first algorithm Commute
is based on estimating the commute time of the random walk (Theorem 2.1). Specifically, the

algorithm simulates random walks from 𝑠 to 𝑡 and back to 𝑠 , and then estimates the expected steps

of such round-trip random walks. Since each round-trip random walk consumes𝑂 (𝜅 (𝑠, 𝑡)) time, the

time complexity of simulating𝑇 such round-trip random walks is𝑂 (𝑇 ×𝜅 (𝑠, 𝑡)) = 𝑂 (2𝑚𝑇 × 𝑟 (𝑠, 𝑡)).
This algorithm is fast when 𝑟 (𝑠, 𝑡) is small [44]. However, when 𝑟 (𝑠, 𝑡) is large, such a round-trip

random walk based algorithm is very costly.

The second algorithm proposed in [44] is based on the transition probability matrix 𝑃 ≜ 𝐷−1𝐴

of the random walk. Peng et al. [44] show that the resistance distance can be represented by the

transition probability matrix 𝑃 as follows:

𝑟 (𝑠, 𝑡) = (𝑒𝑠 − 𝑒𝑡 )𝑇𝐿† (𝑒𝑠 − 𝑒𝑡 ) = (𝑒𝑠 − 𝑒𝑡 )𝑇 (
∞∑︁
𝑘=0

𝑃𝑘𝐷−1) (𝑒𝑠 − 𝑒𝑡 ). (2)

To estimate 𝑟 (𝑠, 𝑡), we can truncate the summation with a sufficient large integer 𝐾 in Eq. (2). The

resistance distance then can be estimated either by sampling simple random walks with length no

large than 𝐾 or sampling collision random walks [44]. Such an algorithm is called Akp. Suppose
that we draw 𝑇 samples to estimate the transition probability and take the average. Clearly, for

estimating 𝑃𝑖 , we need to simulate a random walk with length 𝑖 . In each sample, the random walk
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length can be bounded by

∑𝐾
𝑖=1
𝑖 = 𝑂 (𝐾2). Thus, the time complexity of Akp can be bounded

𝑂 (𝑇𝐾2). However, the drawback of Akp is that in large real-life graphs, it often requires a large 𝐾

to achieve a good estimation accuracy. As a result, the running time of the algorithm can be long.

Furthermore, all the state-of-the-art algorithms can only handle single-pair resistance distance

query, and they are often very hard to efficiently extended to handle single-source query. In

particular, to process a single-source query, these algorithms need to compute 𝑂 (𝑛) single-pair
queries, which is very costly for large graphs. To overcome these limitations, we will propose

several novel and more efficient algorithms to handle both single-pair and single-source resistance

distance queries.

3 NEW THEORETICAL RESULTS
In this section, we establish several new connections between resistance distance, random walk

and spanning 2-forests. These new theoretical results lead to two efficient estimators (Lemma 3.5

and Lemma 3.9) for resistance distance, as well as a deterministic push algorithm for resistance

distance computations.

3.1 New formula for computing resistance distance
It is well known that for any connected undirected graph, the Laplacian matrix 𝐿 has a rank 𝑛 − 1,

i.e., rank(𝐿) = 𝑛 − 1, and thereby its inverse does not exist. As a result, to exactly compute the

resistance distance, existing algorithms often relies on computing the Moore-Penrose pseudo-

inverse of 𝐿 which is defined as 𝐿† =
∑𝑛
𝑖=2

1

𝜆𝑖
®𝑢𝑖 ®𝑢𝑇𝑖 . It is easy to verify that 𝐿† satisfies four properties

[8]: 𝐿𝐿†𝐿 = 𝐿, 𝐿†𝐿𝐿† = 𝐿†, (𝐿𝐿†)𝑇 = 𝐿𝐿†, (𝐿†𝐿)𝑇 = 𝐿†𝐿. Interestingly, although 𝐿 is not invertible,

a submatrix 𝐿𝑣 of 𝐿 is invertible for any node 𝑣 . The following theorem indicates that we can

represent resistance distance as well as the related quantities in terms of 𝐿−1

𝑣 . Due to the space

limits, all the missing proofs can be found in the full version of this paper [29].

Theorem 3.1. Let ®𝑥1 and ®𝑥2 be two vectors that are orthogonal to an all-one vector ®1 = [1, · · · , 1]𝑇 ,
i.e., ®1𝑇 ®𝑥1 = 0, ®1𝑇 ®𝑥2 = 0. Then, for any node 𝑣 in 𝐺 , we have:

®𝑥𝑇
1
𝐿†®𝑥2 = ®𝑥𝑇1

[
𝐿−1

𝑣
®0

®0𝑇 0

]
®𝑥2, (3)

where we assume without loss of generality that 𝑣 is the last node arranged in 𝐿.

Note that Theorem 3.1 holds for any node 𝑣 in𝐺 . For convenience, we refer to such a node 𝑣 as a

landmark node. Based on Theorem 3.1, setting ®𝑥1 = ®𝑥2 = 𝑒𝑠 − 𝑒𝑡 we can derive a new formula to

compute the resistance distance, as shown in the following corollary.

Corollary 1. For any two nodes 𝑠, 𝑡 ≠ 𝑣 , we have

𝑟 (𝑠, 𝑡) = (𝐿−1

𝑣 )𝑠𝑠 + (𝐿−1

𝑣 )𝑡𝑡 − (𝐿−1

𝑣 )𝑠𝑡 − (𝐿−1

𝑣 )𝑡𝑠 . (4)

For any node 𝑢 ≠ 𝑣 , we have
𝑟 (𝑢, 𝑣) = (𝐿−1

𝑣 )𝑢𝑢 = (𝐿−1

𝑢 )𝑣𝑣, (5)

Eq. (4) and Eq. (5) apparently give a new approach to compute the resistance distance. The most

appealing feature is that no matter which 𝑣 we choose, adding or subtracting four elements in

the resulting inverse of the submatrix 𝐿𝑣 maintains an invariant 𝑟 (𝑠, 𝑡). However, computing the

inverse of 𝐿𝑣 is often very expensive, thus the algorithm only works for very small graphs. To

overcome this problem, we will develop several interesting combinatorial explanations for 𝐿−1

𝑣

in the following section, which result in novel and efficient algorithms to compute the resistance

distance.
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3.2 A 𝑣-absorbed random walk interpretation
In this subsection, we give a new combinatorial explanation for the elements of 𝐿−1

𝑣 based on a

concept called 𝑣-absorbed random walk. Based on such a new explanation, we are able to develop

an efficient algorithm by sampling 𝑣-absorbed random walks to compute the resistance distance.

Definition 3.2. (𝑣-absorbed random walk) Given a graph 𝐺 and a node 𝑣 , a 𝑣-absorbed random

walk is a random walk that starts from an arbitrary node 𝑠 and terminates when it hits the node 𝑣 .

Let 𝜏𝑣 [𝑠,𝑢] be the expected number of visits on 𝑢 for a 𝑣-random walk start from 𝑠 . By definition,

we have 𝜏𝑣 [𝑣,𝑢] = 0 and 𝜏𝑣 [𝑢, 𝑣] = 0 for all nodes 𝑢 ∈ 𝑉 . We define the degree-normalized expected

number of visits on 𝑢 for a 𝑣-random walk as 𝜏 [𝑠,𝑢] = 𝜏𝑣 [𝑠,𝑢 ]
𝑑𝑢

. Below, we show that (𝐿−1

𝑣 )𝑠𝑢 has an

interesting combinatorial explanation in terms of 𝜏 [𝑠,𝑢].
Let 𝑃 = 𝐷−1𝐴 be the transition probability matrix of the traditional random walk. Then, we have

𝐿 = 𝐷 (𝐼 − 𝑃). Let 𝑃𝑣 be the submatrix of 𝑃 which is obtained by deleting the 𝑣-th row and the 𝑣-th

column of 𝑃 . Denote by 𝐷𝑣 the diagonal degree matrix except the node 𝑣 . It is easy to verify that

𝐿𝑣 = 𝐷𝑣 (𝐼 − 𝑃𝑣). The following lemma establishes a connection between 𝜏𝑣 [𝑠,𝑢] and 𝑃𝑣 .

Lemma 3.3. 𝜏𝑣 [𝑠,𝑢] = (𝐼 − 𝑃𝑣)−1

𝑠𝑢 .

Based on Lemma 3.3, we can obtain the following result.

Lemma 3.4. 𝜏 [𝑠,𝑢] = 𝜏𝑣 [𝑠,𝑢 ]
𝑑𝑢

= (𝐿−1

𝑣 )𝑠𝑢 .

By Corollary 1 and Lemma 3.4, we can derive that

𝑟 (𝑠, 𝑡) = 𝜏𝑣 [𝑠, 𝑠] + 𝜏𝑣 [𝑡, 𝑡] − 𝜏𝑣 [𝑠, 𝑡] − 𝜏𝑣 [𝑡, 𝑠] . (6)

Armed with Eq. (6), we can compute the resistance distance 𝑟 (𝑠, 𝑡) by sampling 𝑣-absorbed

random walks. Specifically, we are able to derive a novel unbiased estimator for 𝑟 (𝑠, 𝑡) by sampling

𝑣-absorbed random walks.

Lemma 3.5. For 𝑣 ≠ 𝑠, 𝑡 , suppose that we simulate a 𝑣-absorbed random walk from 𝑠 (𝑡 , resp.). Let 𝑋𝑠
(𝑌𝑠 , resp.) be the number of visits on 𝑠 and𝑋𝑡 (𝑌𝑡 , resp.) be the number of visits on 𝑡 by such a 𝑣-absorbed
random walk. Then, 𝑟 = 𝑋𝑠

𝑑𝑠
− 𝑋𝑡

𝑑𝑡
− 𝑌𝑠
𝑑𝑠
+ 𝑌𝑡
𝑑𝑡

is an unbiased estimator of 𝑟 (𝑠, 𝑡), i.e., 𝐸 [𝑟 ] = 𝑟 (𝑠, 𝑡).

3.3 A spanning forest interpretation
In this subsection, we first give a spanning forest interpretation for the resistance distance 𝑟 (𝑠, 𝑡),
based on the classic matrix-tree theorem [8, 13]. Then, we show that such a spanning forest

interpretation is not sufficient to derive an efficient estimator for 𝑟 (𝑠, 𝑡). To achieve this, we

establish a novel connection between spanning tree and current flow on the graph, based on which

we are able to construct efficient estimator for 𝑟 (𝑠, 𝑡).
Given a graph 𝐺 with 𝑛 nodes, a spanning tree is a connected subgraph of 𝐺 which has 𝑛 nodes

and 𝑛 − 1 edges. Let T be the set of spanning trees of 𝐺 . The classic matrix-tree theorem states

that the number of spanning trees in a graph 𝐺 , denoted by |T |, is equal to the determinant of 𝐿𝑣
for any node 𝑣 ∈ 𝐺 [8], i.e., det(𝐿𝑣) = |T |.

A spanning forest is a subgraph of𝐺 that has 𝑛 nodes and it does not contain any cycle. Clearly, a

spanning forest may have several connected components (each connected component is a tree). If a

spanning forest exactly has two connected components, we refer to it as a spanning 2-forest. Given

two nodes 𝑠, 𝑡 , we use F𝑠 |𝑡 to denote the set of spanning 2-forests such that 𝑠 is in one connected

component, and 𝑡 is in the other component. Similarly, denote by F𝑣 |𝑠,𝑡 the set of spanning 2-forests
such that 𝑣 is in one connected component, and both 𝑠 and 𝑡 are in the other component. Then, the
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classic all-minors matrix tree theorem [13] states that

det(𝐿(𝑣, 𝑠 |𝑣, 𝑡)) = |F𝑣 |𝑠,𝑡 |, (7)

where det(𝐿(𝑣, 𝑠 |𝑣, 𝑡)) is the determinant of the matrix 𝐿(𝑣, 𝑠 |𝑣, 𝑡) (obtained by deleting 𝑣-th, 𝑠-th

rows and 𝑣-th, 𝑡-th columns of 𝐿).

Note that 𝑠 and 𝑡 in Eq. (7) can be the same, i.e., 𝑠 = 𝑡 = 𝑢. In this case, the spanning forest set

will degrade to F𝑣 |𝑢 . Based on this, we can obtain a well-known result.

Theorem 3.6. [8] 𝑟 (𝑠, 𝑡) = | F𝑠 |𝑡 || T | .

Theorem 3.6 shows that the resistance distance 𝑟 (𝑠, 𝑡) is proportional to the number of spanning

2-forests with 𝑠 and 𝑡 belonging to two different components. Further, based on Theorem 3.6, we

can derive an interesting result on resistance distance and spanning 2-forests when a landmark

node 𝑣 is considered.

Theorem 3.7. For 𝑠, 𝑡 ≠ 𝑣 , we have 𝑟 (𝑠, 𝑡) = | F𝑣 |𝑠 |+| F𝑣 |𝑡 |−2 | F𝑣 |𝑠,𝑡 |
| T | .

Note that both Theorem 3.6 and Theorem 3.7 provide a spanning forest explanation of resistance

distance 𝑟 (𝑠, 𝑡), but both of them are hard to use to compute 𝑟 (𝑠, 𝑡) in practice. The reason is that

both Theorem 3.6 and Theorem 3.7 require to exactly count the spanning 2-forests, which is often

costly for large graphs. One possible method is to uniformly sample the spanning 2-forest, and

then construct an unbiased estimator to approximate the count of the spanning 2-forests. But

unfortunately, no efficient algorithm for uniformly sampling a spanning 2-forest is known, because

the distribution of the spanning 2-forests of a graph is very complicated [9].

Interestingly, if we only need to compute the resistance distance for each edge (𝑠, 𝑡) in 𝐺 , then
we can efficiently estimate 𝑟 (𝑠, 𝑡) based on the classic random spanning tree sampling algorithm

[21, 61]. This is because there is a one-to-one mapping between a spanning 2-forest in F𝑠 |𝑡 and a

spanning tree Γ containing an edge (𝑠, 𝑡). To see this, we can remove the edge (𝑠, 𝑡) ∈ Γ to obtain a

spanning 2-forest in F𝑠 |𝑡 ; for a spanning 2-forest in F𝑠 |𝑡 , we can add back the edge (𝑠, 𝑡) into the

spanning 2-forest which results in a spanning tree. As a consequence, if there is an edge (𝑠, 𝑡) in 𝐺 ,
sampling a spanning 2-forest in F𝑠 |𝑡 is equivalent to sampling a spanning tree Γ that contains the

edge (𝑠, 𝑡). By applying Theorem 3.6, we can obtain an unbiased estimator for 𝑟 (𝑠, 𝑡) based on the

random spanning tree sampling (compute the proportion of sampled spanning tree that contains

(𝑠, 𝑡)).
However, if (𝑠, 𝑡) ∉ 𝐸, there does not exist a one-to-one mapping between a spanning 2-forest in

F𝑠 |𝑡 and the spanning tree Γ, thus the existing spanning tree sampling techniques cannot be used

to estimate 𝑟 (𝑠, 𝑡). Moreover, as we discussed previously, no algorithm that can sample spanning 2-

forests uniformly is known. To circumvent this challenging problem, we develop a novel technique

based on an interesting connection of the spanning tree of a graph and the current flow on an

electrical network.

Clearly, for any two nodes 𝑠, 𝑡 , there is a unique simple path between 𝑠 and 𝑡 in a spanning tree

of 𝐺 . Let T 𝑠,𝑡𝑢1,𝑢2
be the set of spanning trees that contains an edge (𝑢1, 𝑢2) and the path from 𝑠 to 𝑡

in the tree passes along the edge (𝑢1, 𝑢2). Suppose that a unit of current flows in at 𝑠 and out at 𝑡 .

Denote by 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) the current flows along the edge 𝑒 = (𝑢1, 𝑢2). Then, we have the following
result.

Lemma 3.8. Given two distinct nodes 𝑠 and 𝑡 , for each edge (𝑢1, 𝑢2) ∈ 𝐸, we have 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) =
| T𝑠,𝑡𝑢

1
,𝑢

2
|− | T𝑠,𝑡𝑢

2
,𝑢

1
|

| T | .

Lemma 3.8 suggests that we can estimate the current 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) by sampling spanning trees.

Specifically, when we sample a spanning tree Γ, we can obtain a unique 𝑠 ∼ 𝑡 path from Γ. Then, we
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(b) 𝑠-𝑡 -flow on spanning trees

Fig. 1. Illustration of sending flows on spanning trees.
(a) A graph 𝐺 and an 𝑠-𝑡-flow when a unit current
flows in 𝑣2 and flows out 𝑣4; (b) There are 8 span-
ning trees. The current flows along an edge (𝑢, 𝑣) in
𝐺 equals the average current flows on (𝑢, 𝑣) on each
spanning tree.
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Fig. 2. Illustration of the 𝑣-absorbed push with 𝑟max =

0.2 (𝑣4 is the absorbed node). The Push operations
are conducted on 𝑣2 and 𝑣1. On each node 𝑢, 𝑝 is an
estimation of 𝜏𝑣4

[𝑣2, 𝑢] (𝑢 = 𝑣1, 𝑣2, 𝑣3). The exact value
is 0.75, 1.25, 0.25.

can calculate the proportion of the spanning trees in T 𝑠,𝑡𝑢1,𝑢2
over all the samples (similar computation

for T 𝑠,𝑡𝑢2,𝑢1
) which can directly result in an unbiased estimator for 𝐼 (𝑢1, 𝑢2, 𝑠, 𝑡) based on Lemma 3.8.

As an intuitive example shown in Fig. 1, the current flowing along an edge (𝑢, 𝑣) in a graph 𝐺

can be estimated by randomly sampling spanning trees, and the 𝑠-𝑡-flow on each spanning tree

is an unbiased estimator of the current flowing from 𝑠 to 𝑡 on 𝐺 . Furthermore, we can derive the

following unbiased estimator for 𝑟 (𝑠, 𝑡):

Lemma 3.9. Given two distinct nodes 𝑠 and 𝑡 , we let P𝑠𝑡 be a fixed path between 𝑠 and 𝑡 . Suppose
that a spanning tree 𝑇 ∈ T is sampled uniformly and ˜P𝑠𝑡 is the unique path between 𝑠 and 𝑡 in 𝑇 .
Let 𝑋+ be the number of edges that belong to P𝑠𝑡 and appear in ˜P𝑠𝑡 , 𝑋− be the number of edges that
belong to P𝑠𝑡 and appear in ˜P𝑠𝑡 as an opposite direction, then 𝑟 = 𝑋+ −𝑋− is an unbiased estimator of
𝑟 (𝑠, 𝑡), i.e., 𝐸 [𝑟 ] = 𝑟 (𝑠, 𝑡).

3.4 A deterministic 𝑣-absorbed push procedure
Recall that on a node 𝑢, the personalized PageRank random walk stays at 𝑢 with probability 𝛼 , and

with probability 1−𝛼 randomly jumps to one of its neighbor. Such a randomwalk can be interpreted

as a deterministic push procedure [5, 10, 34, 35]. Specifically, let 𝑟 [𝑢] be the value of a node𝑢 (initially

𝑟 [𝑢] = 0 if 𝑢 is not a source node, and 𝑟 [𝑠] = 1 if 𝑠 is the source). Then, the deterministic push
procedure propagates (1−𝛼) × 𝑟 [𝑢]/𝑑𝑢 to each of its neighbor, and reserves 𝛼 × 𝑟 [𝑢] at 𝑢. The push
procedure terminates when no nodes’s value is changed. It was shown that the reserved value on

each node is a good approximation of its PageRank value when the push procedure terminates. The

key property of such a push procedure is that an invariant 𝜋 (𝑠,𝑤) = 𝜋 (𝑠,𝑤) +∑𝑢∈𝑉 𝑟𝑠 [𝑢]𝜋 (𝑢,𝑤)
is maintained during the push procedure, where 𝜋 (𝑠,𝑤) is the exact personalized PageRank value

of𝑤 with respect to source 𝑠 , 𝜋 (𝑠,𝑤) denotes the reserved value on𝑤 . Such an invariant property

guarantees the correctness of the push algorithm.

Motivated by the deterministic push procedure for personalized PageRank, we propose a novel

deterministic 𝑣-absorbed push procedure which can be regarded as a deterministic variant of the

𝑣-absorbed random walk. Unlike the personalized PageRank random walk, on each node 𝑢, there

is no probability of the walker staying at 𝑢 for the 𝑣-absorbed random walk (all the probability

masses are uniformly propagated to 𝑢’s neighbors). As a result, no value is reserved at 𝑢 and the

invariant maintained by the personalized PageRank push procedure cannot be directly generalized

to the 𝑣-absorbed random walk.

To achieve our goal, the challenging issues needed to be tackled are (1) how to define a push
operator for the 𝑣-absorbed random walk, and (2) how to derive an invariant for the newly-defined

push operator? Our approach to overcome these challenges is based on the following property of

the 𝑣-absorbed random walk.
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Algorithm 1: The 𝑣-absorbed push procedure

Input: A graph𝐺 , a source node 𝑠 , a landmark node 𝑣, a threshold 𝑟max

Output: 𝜏𝑣 [𝑠,𝑢 ] and residual 𝑟 [𝑢 ] for all 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣

1 for each 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣 do
2 𝑟 [𝑢 ] = 0, 𝜏𝑣 [𝑠,𝑢 ] = 0;

3 𝑟 [𝑠 ] = 1;

4 while ∃𝑢 ∈ 𝑉 such that 𝑟 [𝑢 ] ≥ 𝑑𝑢𝑟max do
5 𝜏𝑣 [𝑠,𝑢 ] += 𝑟 (𝑢 ) ;
6 for each 𝑤 ∈ 𝑁 (𝑢 ) , 𝑤 ≠ 𝑣 do
7 𝑟 [𝑤 ] += 𝑟 [𝑢 ]/𝑑𝑢 ;
8 𝑟 [𝑢 ] = 0;

9 return 𝜏𝑣 [𝑠,𝑢 ], 𝑟 [𝑢 ] for all 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣;

Lemma 3.10. For any nodes 𝑢, 𝑡 ≠ 𝑣 , let 𝜏𝑣 [𝑢, 𝑡] be the expected number of visits on 𝑡 of a 𝑣-absorbed
random walk that starts from 𝑢. Then, we have 𝜏𝑣 [𝑢, 𝑡] = 𝛿{𝑢 = 𝑡} +∑𝑤∈𝑁 (𝑢 ),𝑤≠𝑣

1

𝑑𝑢
𝜏𝑣 [𝑤, 𝑡], where

𝛿{𝑢 = 𝑡} is an indicator variable such that 𝛿{𝑢 = 𝑡} = 1 if 𝑢 = 𝑡 and 0 otherwise.

Lemma 3.10 indicates that the expected number of visits on a node 𝑢 by a 𝑣-absorbed random

walk can be represented by the expected number of visits on its neighbors 𝑤 ∈ 𝑁 (𝑢). With this

property, we devise a novel push operator for the 𝑣-absorbed random walk. Similar to the PageRank

push procedure, our push procedure also maintains two vectors 𝑞 and 𝑟 , where 𝑞 [𝑢] denotes the
reserve of 𝑢 and 𝑟 [𝑢] is the residual of 𝑢. The objective of the push procedure is to compute all

𝑞 [𝑢] as an estimation of 𝜏𝑣 [𝑠,𝑢]. The residual for each node 𝑢 ≠ 𝑣 and 𝑢 ≠ 𝑠 is initialized as 0, and

𝑟 [𝑠] is initialized as 1. Then, the push procedure iteratively conducts push operators on the nodes,

until all residuals are below a given threshold. We will show that during the push procedure, an

invariant is maintained and the reserve 𝑞 [𝑢] will approach to 𝜏𝑣 [𝑠,𝑢]. Specifically, we can formally

define the 𝑣-absorbed push operator as follows.

Definition 3.11. (𝑣-absorbed push operator) A 𝑣-absorbed push operator on a node 𝑢 includes

three sequential steps: i) 𝑞 [𝑢] ← 𝑞 [𝑢] + 𝑟 [𝑢]; ii) 𝑟 [𝑤] ← 𝑟 [𝑤] + 𝑟 [𝑢 ]
𝑑𝑢

for each node 𝑤 ∈ 𝑁 (𝑢)
except 𝑣 ; and iii) 𝑟 [𝑢] ← 0.

By Definition 3.11, the 𝑣-absorbed push operator on a node 𝑢 first adds the residual 𝑟 [𝑢] to
itself, and then uniformly propagates another copy of 𝑟 [𝑢] to its neighbors except the absorbed

node 𝑣 . Clearly, if the absorbed node 𝑣 is a neighbor of 𝑢, then 𝑣 will absorb the value of 𝑟 [𝑢]/𝑑𝑢
in 𝑣 . Therefore, the total residual of all nodes in the graph decreases when the push procedure

hits a neighbor of the absorbed node 𝑣 , indicating that the push procedure converges (because all

residuals will be absorbed by 𝑣). As an illustrative example shown in Fig. 2, when applying a push

operation on 𝑣2, 0.5 will be pushed to 𝑣1 and another 0.5 will be absorbed by 𝑣4 (the middle figure).

After that, when applying a push on 𝑣1, 0.5/3 = 0.167 will be pushed to 𝑣2 and 𝑣3 respectively, and

the remaining values 0.167 are absorbed by 𝑣4.

The proposed push procedure for estimating 𝜏𝑣 [𝑠,𝑢] with 𝑢 ≠ 𝑣 is given in Algorithm 1. With

Lemma 3.10, we can prove that the following invariant is maintained during the push procedure,

which results in an efficient deterministic algorithm for approximating the resistance distance

𝑟 (𝑠, 𝑡). (See Section 4.3).

Lemma 3.12. (invariant by the 𝑣-absorbed push) For each node 𝑡 ∈ 𝑉 and 𝑡 ≠ 𝑣 , the reserve 𝑞 [𝑡]
and the residues 𝑟 [𝑡] satisfy the following invariant during the 𝑣-absorbed push procedure:

𝜏𝑣 [𝑠, 𝑡] = 𝑞 [𝑡] +
∑︁
𝑤≠𝑣

𝑟 [𝑤]𝜏𝑣 [𝑤, 𝑡] . (8)
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Note that for sampling-based algorithms, the solutions are unbiased estimators, thus both

over-estimation and under-estimation are possible. Compared to the sampling-based algorithms,

𝑣-absorbed push is a deterministic algorithm where only under-estimate is possible. Based on the

established invariant, we can easily derive an additive error guarantee of Algorithm 1 in term of

𝑟max.

Lemma 3.13. The additive error of the estimation 𝜏𝑣 [𝑠,𝑢] in Algorithm 1 can be bounded by∑
𝑤≠𝑣 𝜏𝑣 [𝑤,𝑢]𝑑𝑤𝑟max.

Note that the result in Lemma 3.13 is the worst-case bound. However, in real-world graphs,

the proposed 𝑣-absorbed push algorithm is often very accurate as confirmed in our experiments.

Additionally, it is worth mentioning that once we obtain a deterministic estimation of 𝜏𝑣 [𝑠,𝑢] for
all 𝑢 ∈ 𝑉 , we can easily derive a deterministic estimation for the resistance distance 𝑟 (𝑠, 𝑡) based
on Eq. (6).

The time complexity of Algorithm 1 is dependent on the absorbed node 𝑣 , i.e., the landmark

node. In general, if 𝑣 is easier to be hit, the residuals will decrease faster, and the algorithm will also

terminate faster. Let ℎ(𝑠, 𝑣) be the hitting time from 𝑠 to 𝑣 by the 𝑣-absorbed random walk. Here

the hitting time denotes the expected number of nodes that are visited by the 𝑣-absorbed random

walk that starts from 𝑠 before hitting 𝑡 . Then, we have the following result.

Lemma 3.14. ℎ(𝑠, 𝑣) = ∑
𝑢≠𝑣 𝜏𝑣 [𝑠,𝑢].

Based on Lemma 3.14, we analyze the time complexity of Algorithm 1 in Theorem 3.15.

Theorem 3.15. The time complexity of Algorithm 1 is 𝑂 ( ℎ (𝑠,𝑣)
𝑟max

).

4 SINGLE-PAIR QUERY COMPUTATION
In this section, we develop novel algorithms for answering single-pair resistance distance query,

based on our theoretical results established in Section 3. We first propose an approximate algorithm

AbWalk based on the 𝑣-absorbed random walk interpretation of resistance distance in Section 4.1.

Then, we develop an approximate algorithm LocalTree based on the spanning forest explanation.

After that, we present a deterministic algorithm Push based on the 𝑣-absorbed push procedure.

Finally, we propose a bidirectional approximate algorithm Bipush which combines Push and

AbWalk to improve the accuracy of the algorithm.

4.1 A 𝑣-absorbed random walk based algorithm
By Lemma 3.5, we are able to estimate the resistance distance by simulating 𝑣-absorbed random

walks. We refer to such an algorithm as AbWalk. The pseudo-code of AbWalk is outlined in

Algorithm 2.

First, we choose a node 𝑣 as a landmark node (e.g., the maximum degree node). Basically,

according to Eq. (4), 𝑟 (𝑠, 𝑡) can be represented as four terms of the elements of 𝐿−1

𝑣 which requires

two 𝑣-absorbed random walks independently sampled from 𝑠 and 𝑡 . Therefore, we sample 𝑇 pairs

of such random walks, and take the combination of four average degree-normalized visits as the

result (Line 2-5).

Note that the estimator 𝑟𝑠,𝑡 in Algorithm 2 is an unbiased estimator according to Lemma 3.5.

Since the random variables 𝜏𝑠𝑡 in Algorithm 2 are unbounded, the sample size 𝑇 is very hard to

determined in theory. However, as we observed in the experiments, AbWalk performs very well on

large real-life datasets using only 10
4
samples.

Let ℎ(𝑠, 𝑣) be the hitting time from 𝑠 to 𝑣 by the 𝑣-absorbed random walk. The time complexity

of Algorithm 2 relies on the hitting time which can be easily derived by definition.
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Algorithm 2: AbWalk
Input: A graph𝐺 , a source node 𝑠 , a target node 𝑡 (𝑠 ≠ 𝑡 ), a landmark 𝑣, sample size𝑇

Output: 𝑟 (𝑠, 𝑡 )
1 𝑟 (𝑠, 𝑡 ) ← 0;

2 for 𝑖 = 1 : 𝑇 do
3 Simulate a 𝑣-absorbed random walk from 𝑠 ; let 𝜏𝑠𝑠 be the number of visits on node 𝑠 , 𝜏𝑠𝑡 be the number of visits on node 𝑡 ;

4 Simulate a 𝑣-absorbed random walk from 𝑡 ; let 𝜏𝑡𝑡 be the number of visits on node 𝑡 , 𝜏𝑡𝑠 be the number of visits on node 𝑠 ;

5 𝑟 (𝑠, 𝑡 ) ← 𝑟 (𝑠, 𝑡 ) + 𝜏𝑠𝑠
𝑑𝑠𝑇
+ 𝜏𝑡𝑡

𝑑𝑡𝑇
− 𝜏𝑠𝑡

𝑑𝑡𝑇
− 𝜏𝑡𝑠

𝑑𝑠𝑇
;

6 return 𝑟 (𝑠, 𝑡 )

Theorem 4.1. The time complexity of AbWalk is 𝑂 (𝑇 × ℎ(𝑡, 𝑣)) if 𝑠 = 𝑣 , 𝑂 (𝑇 × ℎ(𝑠, 𝑣)) if 𝑡 = 𝑣 ,
and 𝑂 (𝑇 × (ℎ(𝑠, 𝑣) + ℎ(𝑡, 𝑣))) if 𝑠, 𝑡 ≠ 𝑣 .

Compared to the state-of-the-art commute-time based algorithm [44], simulating two 𝑣-absorbed

random walks separately from 𝑠 and 𝑡 is intuitively faster than simulating a round-trip random

walk from 𝑠 to 𝑡 , and then back to 𝑠 , especially when 𝑠 and 𝑡 are hard to hit from each other. This is

because we can choose a landmark node 𝑣 as an easy-to-hit node. Generally, such a node exists in

real-life networks, e.g. the largest-degree nodes or the hub nodes. Although it may be difficult for a

traditional random walk that starts from 𝑠 to hit 𝑡 , it is often easy to hit the largest-degree node

from either 𝑠 or 𝑡 , as confirmed in our experiments (see Section 6).

4.2 A local spanning tree sampling algorithm
In this subsection, we develop an interesting spanning tree sampling algorithm for estimating

resistance distance 𝑟 (𝑠, 𝑡) based on the theoretical results presented in Section 3.3. The novelty of

our algorithm, denoted by LocalTree, is twofold. First, LocalTree is the first spanning tree sampling

algorithm that can estimate 𝑟 (𝑠, 𝑡) for any pair of nodes 𝑠 and 𝑡 , while existing spanning tree

sampling algorithm can only estimate the resistance distance 𝑟 (𝑠, 𝑡) when (𝑠, 𝑡) is an edge in𝐺 [21].

Second, existing spanning tree sampling algorithm is a global algorithm [21], as it needs to traverse

the whole graph to sample spanning trees. Interestingly, we show that our algorithm is a local

algorithm which only visits a small portion of the graph. In particular, LocalTree only needs to

perform the first two steps of the spanning tree sampling algorithm (the classic Wilson algorithm

[61]) which is sufficient to determine the unique path between 𝑠 and 𝑡 in the corresponding sampled

spanning tree. Such a local algorithm can significantly reduce the cost for drawing a sample.

Loop-erased random walk. The loop-erased random walk is a type of random walk where we

obtain the random walk trajectory by erasing all its loops. The Wilson algorithm [61] is a well-

known algorithm for uniformly sampling spanning trees based on loop-erased random walks. It

starts by fixing an arbitrary node ordering and initializing the spanning tree Γ with a root node

𝑣 (initially, Γ = {𝑣}). Then, it runs loop-erased random walks following the fixed node ordering,

until the walk hits Γ. Once the random walk hits any node in Γ, the loop-erased random walk

trajectory is added into Γ. When all nodes are covered, a spanning tree Γ is sampled uniformly [61].

Obviously, such an algorithm is a global algorithm which is often costly to sample a spanning tree

on large graphs.

To make the sampling procedure locally, the key idea of LocalTree is that the node ordering in
the Wilson algorithm is arbitrary which means that we can choose 𝑠 and 𝑡 as the first two nodes.

As long as the two nodes are added into the sampled spanning tree, the unique path between them

in the corresponding spanning tree can be determined. This is because when 𝑠 and 𝑡 are added into

Γ, then there must exist a path 𝑣 ∼ 𝑡 and a path 𝑣 ∼ 𝑠 in Γ, thus a 𝑠 ∼ 𝑡 path can be obtained. This

result suggests that we can sample a spanning tree locally by only running the first two steps of

the Wilson algorithm.
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Algorithm 3: LocalTree
Input: A graph𝐺 , a source node 𝑠 , a target node 𝑡 , a landmark node 𝑣, a pre-computed BFS tree Γ𝐵𝐹𝑆 , sample size𝑇

Output: 𝑟 (𝑠, 𝑡 )
1 Let P𝑠𝑡 be the directed path from 𝑠 to 𝑡 in Γ𝐵𝐹𝑆 ;
2 for 𝑖 = 1 : 𝑇 do
3 Simulate a random walk from 𝑠 , until it hits 𝑣, let 𝛾𝑠𝑣 be the trajectory of the random walk after erasing loops;

4 Simulate a random walk from 𝑡 , until it hits 𝛾𝑠𝑣 , let 𝛾𝑡𝑣 be the trajectory of the random walk after erasing loops;

5 𝛾𝑠𝑡 = { (𝑖, 𝑗 ) | (𝑖, 𝑗 ) ∈ 𝛾𝑠𝑣 } ∪ { ( 𝑗, 𝑖 ) | (𝑖, 𝑗 ) ∈ 𝛾𝑡𝑣 };
6 Let

˜P𝑠,𝑡 be the directed path from 𝑠 to 𝑡 in 𝛾𝑠𝑡 ;

7 for each edge (𝑖, 𝑗 ) ∈ P𝑠𝑡 do
8 if (𝑖, 𝑗 ) ∈ ˜P𝑠,𝑡 then 𝑟 (𝑠, 𝑡 ) ← 𝑟 (𝑠, 𝑡 ) + 1

𝑇
;

9 if ( 𝑗, 𝑖 ) ∈ ˜P𝑠,𝑡 then 𝑟 (𝑠, 𝑡 ) ← 𝑟 (𝑠, 𝑡 ) − 1

𝑇
;

10 return 𝑟 (𝑠, 𝑡 ) ;

The pseudo-code of LocalTree is shown in Algorithm 3. According to Lemma 3.9, to estimate

𝑟 (𝑠, 𝑡), we first fix a path P𝑠𝑡 between 𝑠 and 𝑡 , and then compare the unique path
˜P𝑠,𝑡 between 𝑠

and 𝑡 in the sampled spanning tree with P𝑠𝑡 . To this end, we can pre-compute a BFS (Breadth-First

Search) tree with a root node 𝑣 (Line 1). We can obtain a path from 𝑠 to 𝑡 by traversing the BFS tree.

We first sample a random walk from 𝑠 until it hits 𝑣 , and then we erase all its loops and record the

trajectory (Lines 3). Then, we sample a random walk from 𝑡 until it hits the trajectory (Line 4). Note

that the unique path
˜P𝑠,𝑡 in the sampled spanning tree can be determined after these two steps.

After that, we update the estimation by traversing the BFS tree (Lines 6-9). The same as the Wilson

algorithm [45], it can be guaranteed that the spanning tree is sampled uniformly, although we only

obtain the path between 𝑠 and 𝑡 . The correctness of Algorithm 3 is guaranteed by Lemma 3.9. The

time complexity of LocalTree is shown in the following theorem.

Theorem 4.2. The time complexity of Algorithm 3 is bounded by 𝑂 (𝑇 (ℎ(𝑠, 𝑣) + ℎ(𝑡, 𝑣))), where
ℎ(𝑠, 𝑣) is the hitting time of the random walk from 𝑠 to hit 𝑣 .

Note that LocalTree is similar to AbWalk in that both of them simulate two random walks from 𝑠

and 𝑡 respectively. However, unlike AbWalk, the random variables used in LocalTree are bounded,
thus we are able to derive a sample size bound for LocalTree. Specifically, since the 𝑠 ∼ 𝑡 path in

LocalTree is fixed, the related random variables can be bounded by the length of path. As we use

the BFS tree to obtain the path, the length of the path between any two nodes in the BFS tree

is bounded by the diameter of the graph 𝐺 , denoted by Δ𝐺 . We utilize the classical Hoeffding’s

inequality to show that LocalTree achieves an absolute error with a probability at least 1 − 𝑝 𝑓 ,
where 𝑝 𝑓 is a small failure probability.

Theorem 4.3. If the sample size𝑇 ≥
2Δ2

𝐺
𝑙𝑜𝑔 ( 2

𝑝𝑓
)

𝜖2
, Algorithm 3 outputs 𝑟 (𝑠, 𝑡) that satisfies |𝑟 (𝑠, 𝑡) −

𝑟 (𝑠, 𝑡) | ≤ 𝜖 with a probability at least 1 − 𝑝 𝑓 .

4.3 A 𝑣-absorbed push based algorithm
Based on the 𝑣-absorbed push procedure proposed in Section 3.4, we can easily develop a de-

terministic push algorithm to approximate the single-pair resistance distance 𝑟 (𝑠, 𝑡). Recall that
𝑟 (𝑠, 𝑡) = 𝜏𝑣 [𝑠,𝑠 ]

𝑑𝑠
+ 𝜏𝑣 [𝑡,𝑡 ]

𝑑𝑡
− 𝜏𝑣 [𝑠,𝑡 ]

𝑑𝑡
− 𝜏𝑣 [𝑡,𝑠 ]

𝑑𝑠
(Eq. (6)). For a fixed absorbed node 𝑣 (i.e., the landmark

node), if 𝑠 = 𝑣 , we have 𝜏𝑣 [𝑠, 𝑠] = 𝜏𝑣 [𝑣, 𝑣] = 1, 𝜏𝑣 [𝑠, 𝑡] = 𝜏𝑣 [𝑣, 𝑡] = 0, and 𝜏𝑣 [𝑡, 𝑠] = 𝜏𝑣 [𝑡, 𝑣] = 1;

and thus we have 𝑟 (𝑠, 𝑡) = 𝑟 (𝑣, 𝑡) = 𝜏𝑣 [𝑡,𝑡 ]
𝑑𝑡

. Similarly, if 𝑡 = 𝑣 , we have 𝑟 (𝑠, 𝑡) = 𝑟 (𝑠, 𝑣) = 𝜏𝑣 [𝑠,𝑠 ]
𝑑𝑠

. As

a consequence, if either 𝑠 or 𝑡 equals 𝑣 , we only need to invoke the 𝑣-absorbed push procedure

(Algorithm 1) once to estimate 𝑟 (𝑠, 𝑡). However, if both 𝑠 and 𝑡 do not equal to 𝑣 , it is easy to show

that we need to invoke Algorithm 1 twice to estimate 𝑟 (𝑠, 𝑡) (one from 𝑠 and the other one from
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Algorithm 4: Push
Input: A graph𝐺 , a source node 𝑠 , a target node 𝑡 , a landmark node 𝑣, a threshold 𝑟max

Output: 𝑟 (𝑠, 𝑡 )
1 if 𝑡 = 𝑣 (resp., 𝑠 = 𝑣) then
2 𝜏𝑣 [𝑡,𝑢 ], 𝑟𝑡 [𝑢 ] ← 𝑣-absorbed-push(𝐺, 𝑡, 𝑣, 𝑟max )
3 (resp., 𝜏𝑣 [𝑠,𝑢 ], 𝑟𝑠 [𝑢 ] ← 𝑣-absorbed-push(𝐺, 𝑠, 𝑣, 𝑟max ));
4 𝑟 (𝑠, 𝑡 ) ← 𝜏𝑣 [𝑡,𝑡 ]

𝑑𝑡
(resp., 𝑟 (𝑠, 𝑡 ) ← 𝜏𝑣 [𝑠,𝑠 ]

𝑑𝑠
);

5 else
6 𝜏𝑣 [𝑠,𝑢 ], 𝑟𝑠 [𝑢 ] ← 𝑣-absorbed-push(𝐺, 𝑠, 𝑣, 𝑟max ) ;
7 𝜏𝑣 [𝑡,𝑢 ], 𝑟𝑡 [𝑢 ] ← 𝑣-absorbed-push(𝐺, 𝑡, 𝑣, 𝑟max ) ;
8 𝑟 (𝑠, 𝑡 ) ← 𝜏𝑣 [𝑠,𝑠 ]

𝑑𝑠
− 𝜏𝑣 [𝑠,𝑡 ]

𝑑𝑡
− 𝜏𝑣 [𝑡,𝑠 ]

𝑑𝑠
+ 𝜏𝑣 [𝑡,𝑡 ]

𝑑𝑡
;

9 return 𝑟 (𝑠, 𝑡 ) ;

𝑡 ). The pseudo-code of our push algorithm is shown in Algorithm 4. Compared to other proposed

algorithms which are built upon unbiased estimators of 𝑟 (𝑠, 𝑡), 𝑣-absorbed push is a deterministic

algorithm which can obtain under-estimations for the exact values. We can easily show that the

worst-case time complexity of Algorithm 4 is 𝑂 ( ℎ (𝑠,𝑣)+ℎ (𝑡,𝑣)
𝑟max

). Also, the additive error bound can be

easily derived based on Lemma 3.13 which is at most four times of the error bounds in Lemma 3.13.

In our experiments, we will show that Push is extremely fast and also achieves a low error in

practice.

4.4 A bidirectional approach
Motivated by the bidirectional algorithm for personalized PageRank computation [34, 60], we show

that the resistance distance can also be estimated in a similar way by integrating both the proposed

Push algorithm and the 𝑣-absorbed random walk algorithm. For convenience, we refer to such

a bidirectional algorithm as Bipush. The key idea of Bipush is that it first applies Push with a

source node 𝑠 to obtain an estimation of 𝑟 (𝑠, 𝑡) with an additive error guarantee, and then uses the

𝑣-absorbed random walk algorithm to estimate the additive error. The pseudo-code of Bipush is

shown in Algorithm 5.

When 𝑡 = 𝑣 , 𝑟 (𝑠, 𝑡) = 𝜏𝑡 [𝑠, 𝑠] =
𝜏𝑡 [𝑠,𝑠 ]
𝑑𝑠

. For an estimation of 𝜏𝑡 [𝑠, 𝑠], it firstly invokes a 𝑡-

absorbed push algorithm with threshold 𝑟max from 𝑠 (Line 2), and
𝑞 [𝑠 ]
𝑑𝑠

is the current estimation

of 𝑟 (𝑠, 𝑡) (Line 4). After that, the invariant of Eq. (8) is maintained. We have 𝜏𝑡 [𝑠, 𝑠] = 𝑞 [𝑠] +∑
𝑤≠𝑣 𝑟 [𝑤]𝜏𝑡 [𝑤, 𝑠]. It remains to estimate the error term

∑
𝑤≠𝑣 𝑟 [𝑤]𝜏𝑡 [𝑤, 𝑠] =

∑
𝑤≠𝑣

𝑑𝑠
𝑑𝑤
𝑟 [𝑤]𝜏𝑡 [𝑠,𝑤].

Here the equality is due to that (𝐿𝑡 )−1
is a symmetric matrix, thus we have (𝐿−1

𝑣 )𝑠𝑤 = 𝜏𝑡 [𝑤, 𝑠] =
𝜏𝑡 [𝑤,𝑠 ]
𝑑𝑠

=
𝜏𝑡 [𝑠,𝑤 ]
𝑑𝑤

= 𝜏𝑡 [𝑠,𝑤] = (𝐿−1

𝑣 )𝑤𝑠 . Dividing all terms by 𝑑𝑠 , we have 𝑟 (𝑠, 𝑡) = 𝜏𝑡 [𝑠, 𝑠] = 𝜏𝑡 [𝑠,𝑠 ]
𝑑𝑠

=

𝑞 [𝑠 ]
𝑑𝑠
+ ∑𝑤≠𝑣

𝑟 [𝑤 ]
𝑑𝑤

𝜏𝑡 [𝑠,𝑤]. Then, we sample 𝑇 𝑡-absorbed random walks from 𝑠 (Lines 5-9). Note

that the number of visits on a node𝑤 ≠ 𝑡 by a 𝑡-absorbed random walk is an unbiased estimator

of 𝜏𝑡 [𝑠,𝑤] for𝑤 ∈ 𝑉 and𝑤 ≠ 𝑡 . For each node visited by the walk, we can update the estimation

𝑟 (𝑠, 𝑡) by adding
𝑟 [𝑢 ]
𝑑𝑢

in Line 6. This leads to a more precise unbiased estimator of 𝑟 (𝑠, 𝑡), compared

to the AbWalk algorithm. When 𝑠 = 𝑣 or 𝑠, 𝑡 ≠ 𝑣 , similar approach can be applied (see Lines 8-18).

It is easy to show that worst-case time complexity ofBipush is bounded by𝑂 ((𝑇+1/𝑟max) (ℎ(𝑠, 𝑣)+
ℎ(𝑡, 𝑣))). In the experiments, we will show that Bipush is fast and extremely accurate to answer

the single-pair resistance distance query on real-life graphs.

4.5 Heuristic choices of the landmark node 𝑣
Recall that all the proposed algorithms need to select a landmark node 𝑣 . Intuitively, a node that

is easy-to-hit by a random walk is a good landmark node. This is because the time complexity of
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Algorithm 5: Bipush
Input: A graph𝐺 , a source node 𝑠 , a target node 𝑡 , a landmark node 𝑣, a threshold 𝑟max , sample size𝑇

Output: 𝑟 (𝑠, 𝑡 )
1 if 𝑡 = 𝑣 (resp., 𝑠 = 𝑣) then
2 𝜏𝑣 [𝑠,𝑢 ], 𝑟𝑠 [𝑢 ] ← 𝑡 -absorbed-push(𝐺, 𝑠, 𝑣, 𝑟max ) ;
3 (resp., 𝜏𝑣 [𝑡,𝑢 ], 𝑟𝑡 [𝑢 ] ← 𝑠-absorbed-push(𝐺, 𝑡, 𝑣, 𝑟max ));
4 𝑟 (𝑠, 𝑡 ) ← 𝜏𝑣 [𝑠,𝑠 ]

𝑑𝑠
(resp., 𝑟 (𝑠, 𝑡 ) ← 𝜏𝑣 [𝑡,𝑡 ]

𝑑𝑡
);

5 for 𝑖 = 1 : 𝑇 do
6 Run a 𝑡 -absorbed random walk from 𝑠 ;

7 𝑟 (𝑠, 𝑡 ) ← 𝑟 (𝑠, 𝑡 ) + 𝑟𝑠 [𝑢 ]
𝑑𝑢𝑇

for each node 𝑢 that the random walk visits;

8 (resp., run a 𝑠-absorbed random walk from 𝑡 ;

9 𝑟 (𝑠, 𝑡 ) ← 𝑟 (𝑠, 𝑡 ) + 𝑟𝑡 [𝑢 ]
𝑑𝑢𝑇

for each node 𝑢 that the random walk visits;)

10 else
11 𝜏𝑣 [𝑠,𝑢 ], 𝑟𝑠 [𝑢 ] ← 𝑣-absorbed-push(𝐺, 𝑠, 𝑣, 𝑟max ) ;
12 𝜏𝑣 [𝑡,𝑢 ], 𝑟𝑡 [𝑢 ] ← 𝑣-absorbed-push(𝐺, 𝑡, 𝑣, 𝑟max ) ;
13 𝑟 (𝑠, 𝑡 ) ← 𝜏𝑣 [𝑠,𝑠 ]

𝑑𝑠
− 𝜏𝑣 [𝑠,𝑡 ]

𝑑𝑡
− 𝜏𝑣 [𝑡,𝑠 ]

𝑑𝑠
+ 𝜏𝑣 [𝑡,𝑡 ]

𝑑𝑡
;

14 for 𝑖 = 1 : 𝑇 do
15 Run a 𝑣-absorbed random walk from 𝑠 ;

16 𝑟 (𝑠, 𝑡 ) ← 𝑟 (𝑠, 𝑡 ) + 𝑟𝑠 [𝑢 ]
𝑑𝑢𝑇

− 𝑟𝑡 [𝑢 ]
𝑑𝑢𝑇

for each node 𝑢 that the random walk visits;

17 Run a 𝑣-absorbed random walk from 𝑡 ;

18 𝑟 (𝑠, 𝑡 ) ← 𝑟 (𝑠, 𝑡 ) + 𝑟𝑡 [𝑢 ]
𝑑𝑢𝑇

− 𝑟𝑠 [𝑢 ]
𝑑𝑢𝑇

for each node 𝑢 that the random walk visits;

19 return 𝑟 (𝑠, 𝑡 ) ;

all the proposed algorithms are closely related to the hitting time ℎ(𝑠, 𝑣) and ℎ(𝑡, 𝑣). To achieve a

good performance, we suggest three heuristic choices of the landmark node. Specifically, we select

the landmark node as (i) the highest-degree node, or (ii) the highest PageRank node, or (iii) the

node with the maximum core number (a 𝑘-core is the maximal subgraph where each node has a

degree no less than 𝑘 ; and the core number of a node 𝑢 is the largest 𝑘 such that there is a 𝑘-core

containing 𝑢). This is because all these three heuristic strategies select the high-centrality node as

the landmark which is intuitively easy to hit by a random walk. Moreover, all these strategies can

be efficiently implemented. Note that there may not exist one landmark node that optimizes all

queries, but a careful choice of the landmark node can lead to a very good average performance. In

our experiments, we will study the effect of those landmark selection strategies.

5 SINGLE-SOURCE QUERY COMPUTATION
In this section, we develop several novel and efficient algorithms to process the single-source

resistance distance query. Note that all the algorithms proposed in Section 4 can be easily extended

to handle the single-source query problem by processing 𝑛−1 queries 𝑟 (𝑠,𝑢) for all𝑢 ∈ 𝑉 . However,
the time complexity of such straightforward baselines is around 𝑂 (𝑛) times of the time costs taken

by processing a single-pair query, which is clearly costly for large graphs. To tackle this problem,

we first propose a new loop-erased random walk sampling algorithm which is shown to be more

efficient than the baselines. Then, to further improve the efficiency, we develop two novel index-

based algorithms which can answer a single-source query in almost the same time as answering a

single-pair query. Below, we first briefly analyze the challenges of the single-source query problem,

followed by the loop-erased random walk algorithm and the index-based algorithms.

5.1 Challenges of single-source query
According to Eq. (4) and Eq. (5), we can see that to compute 𝑟 (𝑠,𝑢) for all 𝑢 ∈ 𝑉 , it is sufficient to (i)

calculate (𝐿−1

𝑣 )𝑠𝑢 for all 𝑢 ∈ 𝑉 (because 𝐿−1

𝑣 is a symmetric matrix), and (ii) compute all diagonal

elements of the matrix 𝐿−1

𝑣 (i.e., (𝐿−1

𝑣 )𝑢𝑢 for all 𝑢 ∈ 𝑉 ). Note that we can run a 𝑣-absorbed push
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procedure (Algorithm 1) with a source node 𝑠 to compute (𝐿−1

𝑣 )𝑠𝑢 for all 𝑢 ∈ 𝑉 , which corresponds

to a row of the matrix 𝐿−1

𝑣 . The most challenging part of the single-source resistance distance query

problem is how to efficiently compute all the diagonal elements of 𝐿−1

𝑣 . No efficient algorithm that

can compute the diagonal elements of 𝐿−1

𝑣 is known. A straightforward algorithm is to compute

the matrix inverse of 𝐿𝑣 and then get the diagonal elements, which is very costly and clearly does

not work for large graphs.

Remark. It is worth remarking that a single-source personalized PageRank query only requires

computing a row of the personalized PageRank matrix (no need to compute the diagonal elements),

thus the problem can be easily solved by using a push algorithm with a source node 𝑠 . Therefore,

existing techniques for processing single-source personalized PageRank query cannot be extended

to solve our problem. We also note that a recent work on approximating the diagonal items of the

pseudo-inverse of Laplacian 𝐿† [6] can be modified to compute the single-source resistance distance

query. However, the method proposed in [6] is mainly tailored for estimating the diagonal elements

of 𝐿† (not 𝐿−1

𝑣 ). Moreover, the technique used in [6] requires to match a sampled spanning tree with

a pre-computed tree, which is also expensive for large graphs (as evidenced in our experiments).

5.2 The loop-erased random walk based algorithm
In this subsection, we develop a novel algorithm based on the loop-erased random walk sampling

[61] to answer the single-source query. We show that sampling a spanning tree by the loop-erased

random walk can obtain an unbiased estimator for 𝑟 (𝑠,𝑢) for all 𝑢 ∈ 𝑉 (𝑢 ≠ 𝑣). As a consequence,

we can sample 𝑇 spanning trees to obtain a good approximation for the single-source resistance

distance query problem. We will show that such a new algorithm is much faster than the approach

based on processing 𝑂 (𝑛) single-pair queries.
Our technique is based on an interesting connection between the 𝑣-absorbed random walk and

the loop-erased random walk. As introduced in Section 4.2, the loop-erased random walk algorithm

(i.e., the Wilson algorithm) first sets a node 𝑣 as root. Then, the algorithm fixes an arbitrary node

ordering 𝑢1, · · · , 𝑢𝑛−1, and follows this order to simulate loop-erased random walk until hitting the

former trajectories. The algorithm terminates when all nodes are covered. Through a complete

execution of the Wilson algorithm, each node except 𝑣 can be visited many times. Surprisingly,

we show that the expected number of visits on each node 𝑢 equals 𝜏𝑣 [𝑢,𝑢], which is the expected

number of visits on 𝑢 for a 𝑣-absorbed random walk starting from 𝑢.

Lemma 5.1. Suppose that we simulate a loop-erased random walk with a root 𝑣 . Let 𝑋𝑢 be the
random variable of the number of visits on a node 𝑢. Then, we have

𝐸 [𝑋𝑢] = 𝜏𝑣 [𝑢,𝑢] = (𝐼 − 𝑃𝑣)−1

𝑢𝑢 , for all 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣 . (9)

According to Eq. (5) and Lemma 3.4, we have 𝑟 (𝑣,𝑢) = 𝜏𝑣 [𝑢,𝑢] = 𝜏𝑣 [𝑢,𝑢 ]
𝑑𝑢

for all 𝑢 ∈ 𝑉 with 𝑢 ≠ 𝑣 .

Thus,
𝑋𝑢

𝑑𝑢
is an unbiased estimator of 𝑟 (𝑣,𝑢). As a result, we can simulate loop-erased random walks

to estimate all 𝑟 (𝑣,𝑢). The algorithm is outlined in Algorithm 6 which is a slightly modification of

the classic Wilson algorithm. Compared to the Wilson algorithm, the main difference is that we

additionally record the number of visits on each node and use it to construct an unbiased estimator

(see Line 9).

The time complexity of Algorithm 6 is closely related to the root node 𝑣 (i.e., the landmark node)

as shown in the following theorem.

Theorem 5.2. The time complexity of Algorithm 6 is𝑂 (𝑇 ×𝑇𝑟 ((𝐼 −𝑃𝑣)−1)), where𝑇𝑟 ((𝐼 −𝑃𝑣)−1))
denotes the trace of the matrix (𝐼 − 𝑃𝑣)−1) and 𝑇 is the sample size.
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Algorithm 6: LEwalk
Input: A graph𝐺 , a source node 𝑠 , sample size𝑇

Output: 𝑟 (𝑠,𝑢 ) for all 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑠

1 𝑟 (𝑠,𝑢 ) ← 0 for all 𝑢 ∈ 𝑉 ;

2 Fix an arbitrary ordering (𝑣1, · · · , 𝑣𝑛−1 ) of𝑉 \ {𝑠 };
3 for 𝑖 = 1 : 𝑇 do
4 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢 ] ← 𝑓 𝑎𝑙𝑠𝑒 , 𝑁𝑒𝑥𝑡 [𝑢 ] ← −1 for 𝑢 ∈ 𝑉 ;

5 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑠 ] ← 𝑡𝑟𝑢𝑒 ;

6 for 𝑗 = 1 : 𝑛 − 1 do
7 𝑢 ← 𝑣𝑗 ;

8 while !𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢 ] do
9 𝑟 (𝑠,𝑢 ) ← 𝑟 (𝑠,𝑢 ) + 1

𝑑𝑢𝑇
;

10 𝑁𝑒𝑥𝑡 [𝑢 ] ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑢 ) , 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢 ];
11 𝑢 ← 𝑣𝑖 ;

12 while !𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢 ] do
13 𝐼𝑛𝑇𝑟𝑒𝑒 [𝑢 ] ← 𝑡𝑟𝑢𝑒 , 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢 ];

14 return 𝑟 (𝑠,𝑢 ) for all 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑠 ;

Note that the time complexity of Algorithm 6 is lower than that of the baseline algorithm based on

processing𝑂 (𝑛) single-pair queries. This is because answering a single-pair query (𝑟 (𝑠,𝑢)) takes at
least𝑂 (𝑇 ×ℎ(𝑠,𝑢)) = 𝑂 (𝑇 ×∑𝑢≠𝑣 𝜏𝑣 [𝑠,𝑢]) = 𝑂 (𝑇 ×

∑
𝑢≠𝑣 [𝐼−𝑃𝑣]−1

𝑠𝑢 ) time by the algorithms proposed

in Section 4. As a result, for a single-pair query, such an algorithm takes𝑂 (𝑇 ×∑𝑠≠𝑣

∑
𝑢≠𝑣 [𝐼 −𝑃𝑣]−1

𝑠𝑢 ),
which is clearly much higher than 𝑂 (𝑇 ×𝑇𝑟 ((𝐼 − 𝑃𝑣)−1)).

5.3 The index-based algorithms
Although Algorithm 6 is much faster than the baseline algorithm, sampling a spanning tree is a

global procedure which may take a long time on large graphs. Hence, a natural question is that can

we have a local algorithm (like the algorithms for single-pair query) to handle the single-source

query? We answer this question affirmatively by developing two index-based algorithms.

Index construction. The key observation is that if we can pre-compute the diagonal elements

of the matrix 𝐿−1

𝑣 , then the single-source query problem can be solved efficiently, as we analyzed

in Section 5.1. By Eq. (5), we can see that the diagonal element (𝐿−1

𝑣 )𝑠𝑠 = 𝑟 (𝑣, 𝑠) is exactly the

resistance distance between 𝑠 and the landmark node 𝑣 . As a result, we can first pre-compute all

the resistance distances from the landmark node 𝑣 to all the other nodes (just computing one

single-source query from the landmark node 𝑣), and then use these pre-computed distance as an

index 𝑅 [𝑢] for 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑣 . With such a resistance distance index, it is sufficient to answer

any single-source query from a node 𝑠 ≠ 𝑣 by computing a row of (𝐿−1

𝑣 ). Note that we can use

Algorithm 6 to build the index array 𝑅 which takes 𝑂 (𝑇 ×𝑇𝑟 ((𝐼 − 𝑃𝑣)−1)) time. Clearly, the space

overhead of the index array 𝑅 is 𝑂 (𝑛).
Query processing. We propose two approaches to compute the 𝑠-th row of (𝐿−1

𝑣 ). The first

approach is based on Lemma 3.4. We can repetitively simulate 𝑣-absorbed random walks from a

node 𝑠; the normalized expected number of visits on a node 𝑢 is (𝐿−1

𝑣 )𝑠𝑢 . The resulting algorithm
AbWalk* is shown in Algorithm 7. An index array 𝑅 is taken as an input, where 𝑅 [𝑢] = 𝑟 (𝑣,𝑢) and
is pre-computed using Algorithm 6. The time complexity of AbWalk* is almost the same as that of

Algorithm 2, with only an 𝑂 (𝑛) additional term to compute and output 𝑂 (𝑛) answers (Lines 4-6).
The second approach is to apply a 𝑣-absorbed push (Algorithm 1) to estimate the 𝑠-th row of 𝐿−1

𝑣

which results in our Push* algorithm. The pseudo-code of Push* is shown in Algorithm 8. Again,

the time complexity of Push* is almost the same as that of Algorithm 1, with only an𝑂 (𝑛) additional
term to compute and output 𝑂 (𝑛) answers (Lines 2-4). Note that similar to AbWalk and Push, the
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Algorithm 7: AbWalk*
Input: A graph𝐺 , a source node 𝑠 , a landmark node 𝑣, sample size𝑇 , a resistance distance index array 𝑅 [𝑢 ] for 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣

Output: 𝑟 (𝑠,𝑢 ) for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑠

1 𝜏𝑣 [𝑠,𝑢 ] ← 0 for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑣;

2 for 𝑖 = 1 : 𝑇 do
3 Run a 𝑣-absorbed random walk from 𝑠 , for each step the random walk passes 𝑢, 𝜏𝑣 [𝑠,𝑢 ] ← 𝜏𝑣 [𝑠,𝑢 ] + 1

𝑇
;

4 for 𝑖 = 1 : 𝑛 do
5 𝑟 (𝑠,𝑢 ) ← 𝑅 [𝑠 ] + 𝑅 [𝑢 ] − 2

𝜏𝑣 [𝑠,𝑢 ]
𝑑𝑢

;

6 return 𝑟 (𝑠,𝑢 ) for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑠 ;

Algorithm 8: Push*
Input: A graph𝐺 , a source node 𝑠 , a landmark node 𝑣, a threshold 𝑟𝑚𝑎𝑥 , a resistance distance index array 𝑅 [𝑢 ] for 𝑢 ∈ 𝑉 , 𝑢 ≠ 𝑣

Output: 𝑟 (𝑠,𝑢 ) for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑠

1 𝜏𝑣 [𝑠,𝑢 ], 𝑟 [𝑢 ] ← 𝑣-absorbed-push(𝑠, 𝑣, 𝑟𝑚𝑎𝑥 )
2 for 𝑖 = 1 : 𝑛 do
3 𝑟 (𝑠,𝑢 ) ← 𝑅 [𝑠 ] + 𝑅 [𝑢 ] − 2

𝜏𝑣 [𝑠,𝑢 ]
𝑑𝑢

;

4 return 𝑟 (𝑠,𝑢 ) for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑠 ;

Table 2. Datasets ( ¯𝑑 : average degree; ¯ℎ: average hitting time; Δ𝐺 : diameter of the graph)

Type Dataset 𝑛 𝑚 ¯𝑑 ¯ℎ Δ𝐺

Small Facebook 4,039 88,233 43.69 767 8

graphs CAIDA 26,475 53,381 4.03 1189 17

Youtube 1,134,890 2,987,624 5.27 269 24

Large Pokec 1,632,803 22,301,964 27.32 3169 14

graphs Orkut 3,072,441 117,184,899 76.28 7336 10
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Fig. 3. Runtime of different algorithms for answering single-pair queries

time complexity of AbWalk* and Push* is closely related to the landmark node 𝑣 . Likewise, a good

landmark should be an easy-to-hit node. Thus, the same landmark selection strategies proposed in

Section 4.5 can also be applied for our index-based algorithms.

6 EXPERIMENTS
6.1 Experimental setup

Datasets and query sets. We use 5 real-life datasets, including 2 small graphs and 3 large graphs.

All datasets can be downloaded from [28]. Note that for a non-connected graph, since the resistance

distance between nodes in different connected components are infinite, we can process each

connected component separately. As a result, we precompute the largest connected component of

all datasets, the detailed statistics of the largest connected components are summarized in Table 2.

Specifically,
¯𝑑 = 2𝑚

𝑛
denotes the average degree, Δ𝐺 is the diameter of the graph,

¯ℎ is the average

hitting time from all nodes to the landmark node (the highest degree node). Suppose that 𝑣 is

the highest-degree node,
¯ℎ =

∑
𝑠∈𝑉

1

𝑛
ℎ(𝑠, 𝑣). We estimate

¯ℎ by randomly generating 10
6
nodes

uniformly and simulating 𝑣-absorbed random walks from these nodes. The smaller
¯ℎ is, the smaller

ℎ(𝑠, 𝑣) +ℎ(𝑡, 𝑣) will be for any two nodes 𝑠 and 𝑡 . For small graphs, we are able to compute the exact

resistance distance between any pair of nodes via computing the 𝐿−1

𝑣 matrix. The exact resistance

distance is used as the ground truth to evaluate the estimation errors of different approximation
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Fig. 4. Estimation errors of different algorithms for
answering single-pair queries
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Fig. 6. Runtime of different algorithms for single-source query (the triangle in each figure denotes the index
building time)
algorithms. For large graphs, it is very difficult to obtain the exact resistance distances by existing

approaches. Thus, for single-pair query, we use Bipush with a large sample size 𝑇 (𝑇 = 10
6
) and a

small 𝑟max (𝑟𝑚𝑎𝑥 = 10
−6
) to compute a high-precision resistance distance estimation, and use such

a high-precision estimation as the ground truth. Similarly, for single-source query, we first use a

relatively-large sample size 𝑇 (𝑇 = 10
5
) to build the index, and then invoke Push* with a small 𝑟max

(𝑟max = 10
−7
) to derive high-precision single-source query estimations as the ground-truth results.

For single-pair queries, we uniformly sample 1000 node pairs and use them as the query set.

The error of different algorithms is measured by |𝑟 (𝑠,𝑢) − 𝑟 (𝑠,𝑢) |, where 𝑟 (𝑠,𝑢) and 𝑟 (𝑠,𝑢) are
the estimated resistance distance and the ground truth respectively. For single-source queries,

we uniformly sample 50 source nodes and use them as the query set. We use the 𝐿1-error to

evaluate the error of various single-source query processing algorithms, which is defined as∑
𝑢∈𝑉 |𝑟 (𝑠,𝑢) − 𝑟 (𝑠,𝑢) |.

Different algorithms. For single-pair query, we compare our algorithms with two state-of-the-art

algorithms Commute and Akp proposed in [44]. Commute is based on estimating the commute

time of the random walk, while Akp is based on estimating the truncated transition probability. We

do not include other previous algorithms because all of them are outperformed by Commute and
Akp [44]. For Commute and Akp, we use their original implementations in [44]. For our solutions,

we implement four different algorithms which are AbWalk (Algorithm 2), LocalTree (Algorithm 3),

Push (Algorithm 4) and Bipush (Algorithm 5).

For single-source query, we compare our algorithms with two baselines: Base and Ust. Here
Base is a baseline algorithm that invokes AbWalk 𝑛 − 1 times to compute 𝑛 − 1 single-pair queries.

Ust is the algorithm proposed in [6] for computing the diagonal elements of 𝐿†. As we discussed in

Section 5.1, such an algorithm can be modified to compute the single-source resistance distance

query. For our solutions, we implement three different algorithms: an online algorithm LEwalk
(Algorithm 6), and two index-based algorithm AbWalk* (Algorithm 7) and Push* (Algorithm 8).

Parameters. ForCommute, there is a parameter 𝜖 , we set it as 0.1 following [44]. For Akp, there are
two parameters the truncated parameter 𝐾 and the sample size 𝑇 ; we set 𝐾 = 100 and 𝑇 = 10

4
. The

other methods can be categorized into two different types: i) sampling-based methods (including

AbWalk, LocalTree, LEwalk, AbWalk*, Base, Ust); ii) push-based methods (including Push and

Push*). For sampling-based methods, we set the sample size 𝑇 to 10
4
. For push-based methods,

there is a parameter 𝑟𝑚𝑎𝑥 , we set it ato 10
−4
. Bipush has both parameters𝑇 and 𝑟𝑚𝑎𝑥 , we set𝑇 = 10

4

and 𝑟𝑚𝑎𝑥 = 10
−4

respectively. We will evaluate the proposed algorithms by varying parameters in
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Section 6.4. All our algorithms requires to select a landmark node. We choose the highest-degree

node as the landmark node by default. We will also study the effect of other landmark choices

proposed in Section 6.5.

Experimental environment. All the experiments are conducted on a Linux 20.04 server with

Intel 2.0 GHz CPU and 128GB memory. All the proposed algorithms are implemented in C++. For

the baselines Akp and Commute, we use the open-source C++ implementations provided by their

original authors [44]. All algorithms used in our experiments are complied using GCC9.3.0 with

-O3 optimization.

6.2 Results of single-pair query
In this experiment, we compare the query time and estimation error of different algorithms for

answering single-pair query. We use box-plot to illustrate the query time and error, so that we

can clearly observe the distributions of the performance of different algorithms. Fig. 3 shows the

running time of various algorithms. As can be seen, all the proposed algorithms AbWalk, LocalTree,
Push and Bipush achieve significantly less query time than Commute on most datasets, which

confirms our analysis in Section 2.2. We can also observe that the overall query time of AbWalk,
LocalTree and Bipush are comparable with that of Akp. Among all competitors, the proposed Push
algorithm is extremely fast on all datasets. The average query time of Push is at least two orders

of magnitude lower than the state-of-the-art (SOTA) algorithms on large graphs. For example, on

Pokec, the average query time of Push is 0.02 seconds, while the state-of-the-art Akp algorithm

consumes around 17.5 seconds. These results demonstrate the high efficiency of the proposed

algorithms.

Fig. 4 shows the estimation error of various algorithms. We show the results on Facebook and
Pokec due to space limits. The results on other datasets are consistent and can be found in [29].

From Fig. 4, we can see that all the proposed algorithms AbWalk, LocalTree, Push and Bipush
are much more accurate than two SOTA algorithms Commute and Akp. Compared to the other

algorithms, Akp is much less accurate, which confirms our analysis in Section 2.2. The smaller
¯ℎ

is, the faster AbWalk and LocalTree will be. LocalTree performs worse than AbWalk on Youtube
which has a relatively large diameter. We also observe that our Bipush algorithm is extremely

accurate whose average estimation error can be up to three orders of magnitude lower than that of

Commute. For example, on Facebook, the average estimation error of Bipush is round 7 × 10
−6
,

while the average error of the SOTA algorithm Commute is round 3 × 10
−3
. These results indicate

that the proposed algorithms can achieve a very high precision in answering single-pair resistance

distance query.

In summary, for real-life datasets with a relatively small
¯ℎ, our AbWalk and LocalTree algorithms

are better than the state-of-the-art algorithms. LocalTree is more suitable for graphs with small

diameters. Bipush has the best overall performance on all datasets, as it can achieve a very high

accuracy and consumes comparable time as the other competitors. As a result, we recommend to

apply Bipush to approximate single-pair resistance distance computations.

6.3 Results of single-source query
In this experiment, we study the query time and estimation error of different algorithms for

answering single-source queries. We use box-plot to show the performance of various algorithms.

We also use a triangle to denote the index-building time as well as the estimation error using

LEwalk. We compare three online methods, Base, Ust and LEwalk, and two index-based methods,

AbWalk* and Push*. The results of query time of various algorithms is shown in Fig. 6. As can

be seen, both LEwalk and Ust are much faster than Base which is consistent with our analysis in
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Fig. 7. Single-pair query, varying parameters
(Facebook)
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Fig. 8. Single-source query, varying parameters
(Facebook)

Section 5. On large datasets, Base cannot terminate within 10 hours. In general, LEwalk is faster
than Ust because it avoids the operations of matching two trees as we discussed in Section 5.1. For

the index-based methods, the index-building time is generally lower than an online single-source

query time, because the time overhead 𝑂 (𝑇𝑟 ((𝐼 − 𝑃𝑣)−1)) is often lower for the landmark node 𝑣 ,

compared to the other query nodes. Both AbWalk* and Push* can answer a single-source query

in very short time even on the largest graph; and they are 3 ∼ 4 orders of magnitude faster than

the online algorithms. Especially, the Push* is extremely fast, and it can answer single-source

queries within around 1 second on all large graphs. These results demonstrate the high-efficiency

of the proposed algorithms. Fig. 5 depicts the estimation errors of different algorithms. We show

the results on Facebook and Pokec due to space limits. The results on all datasets are generally

consistent and can be found in the full version of the paper [29]. We can see that the estimation

errors of the index-based methods are comparable to online algorithms. Also, we can see that

LEwalk achieves slightly lower errors than Ust. These results demonstrate that our solutions are

very efficient and effective to handle single-source queries. For the index size, it only requires an

𝑂 (𝑛) array to store the resistance distance values, thus it is much smaller than the graph size. We

omit the results for evaluating the index size due to the space limit.

In summary, for online algorithms, we recommend to use LEwalk to approximately compute the

single-source resistance distance; for index-based algorithms, we recommend to apply LEwalk to

construct an index for the landmark node, and use Push* to answer the single-source resistance
distance query.

6.4 The effect of different parameters
First, we evaluate the performance of the proposed algorithms for answering single-pair queries

when varying parameter 𝑇 and 𝑟max. For AbWalk, LocalTree and Bipush, we vary the parameter 𝑇

(i.e., the sample size) from 10
2
to 10

6
; and for Push and Bipush, we vary the parameter 𝑟max from

10
−3

to 10
−7
. The results on Facebook are shown in Fig. 7; and similar results can also be observed

on the other datasets. As expected, with 𝑇 increasing, the query time of AbWalk, LocalTree and
Bipush increases, and their estimation errors decrease. Similarly, with 𝑟max decreasing, the query

time of Push and Bipush increases and the errors getting smaller. Again, we find that Bipush is

much more accurate than the other algorithms; and its estimation error can even be less than 10
−9

when 𝑟max = 10
−5
. These results further confirm the efficiency and effectiveness of our algorithms.

Second, for the single-source query, we vary the parameter 𝑇 in Ust, LEwalk and AbWalk*, and
vary the parameter 𝑟𝑚𝑎𝑥 in Push*. Also, the index-building algorithm also has a parameter 𝑇 , we

refer to it as LEwalk-v. The results on Facebook are shown in Fig. 8. For the other datasets, the

results are consistent. As can be seen from Fig. 8, the query time becomes larger and the 𝐿1-error

becomes smaller as 𝑇 getting larger for all Ust, LEwalk and AbWalk*. Likewise, as 𝑟𝑚𝑎𝑥 decreases,
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Fig. 9. The effect of the landmark node 𝑣 (Facebook)
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Fig. 10. Evaluation of the impact of node-update or-
dering in the 𝑣-absorbed push procedure (Algorithm 1)

the query time of Push* increases and the error decreases. Again, from Fig. 8(a), we can observe

that LEwalk is slightly faster than Ust; both LEwalk and Ust are much slower than the index-based

method AbWalk*. From Fig. 8(c), our index-building algorithm has a lower error than the single-

source query processing algorithms. The reason may be that for the selected landmark node is often

easier to hit than the other source nodes, thus the loop-erased random walk trajectories generated

by LEwalk is often not too long, which reduces the variance of the estimator. These results further

conform that our index-based solutions are very accurate.

6.5 The impact of the landmark node
In this experiment, we evaluate the impact of the landmark node 𝑣 on all proposed algorithms.

Three heuristic landmark selection strategies including Degree, Core and PageRank are evaluated.

Here Degree chooses the node with the largest degree, Core picks the node with the largest core

number [39], and PageRank selects the node with the highest PageRank value. The results on

Facebook are shown in Fig. 9. Similar results can also be observed on the other datasets.

As shown in Figs. 9(a-b), the query time of all the algorithms is the lowest when using the

highest-degree node as the landmark for both single-pair and single-source queries, followed

by Core and PageRank. The reason may be that the highest-degree node is intuitively the most

easy-to-hit node compared to the other nodes. For the estimation errors (Figs. 9(c-d)), Degree and
Core can achieve comparable performance, and both of them are generally better than PageRank.
These results suggest that the highest-degree node is a very good landmark node in practice which

is also used in our previous experiments.

6.6 The impact of the node-update ordering
Recall that the 𝑣-absorbed push procedure (Algorithm 1) iteratively updates nodes with residual

larger than a threshold. The performance of the algorithmmay depend on the node-update ordering.

In this experiment, we study the impact of different orderings. Specifically, we compare two ordering

techniques: i) first-in-first-out (FIFO) ordering, and ii) priority ordering. For the priority ordering,

we use the residual as the priority for each node, and the algorithm always processes the node

with the largest residual. We apply Algorithm 1 to estimate 𝜏𝑣 [𝑠,𝑢] for all 𝑢 ∈ 𝑉 and 𝑢 ≠ 𝑣 w.r.t.

a query node 𝑠 . For the query set, we generate 50 nodes uniformly and report the average result.

We vary the parameter 𝑟𝑚𝑎𝑥 from 10
−3

to 10
−7
. Fig. 10 shows the results on Youtube, and the

results on the other datasets are consistent. As can be seen, the query time of Algorithm 1 with

priority ordering is significantly higher than that of Algorithm 1 with FIFO ordering. However, the

𝐿1-errors of Algorithm 1 with these two orderings are almost the same. This result indicates that it

is sufficient to use a FIFO ordering in our 𝑣-absorbed push algorithm, which is also used in our

previous experiments.
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Table 3. Top-10 similar results w.r.t. a query "Leman Akoglu" on DBLP and a query "decrease" on WordNet
DBLP WordNet

Rank PageRank SimRank Res Degree Corrected-Res PageRank SimRank Res Degree Corrected-Res
1 Christos Faloutsos Sadegh M. Milajerdi Christos Faloutsos Jiawei Han Disha Makhija small diminish money food budget

2 Hanghang Tong Emaad A. Manzoor Jiawei Han Philip S. Yu Keith Henderson lower lower food money diminish

3 Stephan Gunnemann Hau Chan Philip S. Yu Christos Faloutsos Shebuti Rayana down reduce water water shrink

4 Neil Shah Shuchu Han Michael J. Franklin Michael J. Franklin Alex Beutel reduce minimum car car descend

5 Emmanuel Muller Tianmin Zou Raghu Ramakrishnan Jian Pei Bryan Hooi diminish shrink good good increase

6 B. Aditya Prakash Roni Rosenfeld Beng Chin Ooi Gerhard Weikum Brian Gallagher decline descent bad bad reduce

7 Sadegh M. Milajerdi Kailash Budhathoki Jian Pei Raghu Ramakrishnan Christos Faloutsos increase decline work work decline

8 Emaad A. Manzoor Apratim Bhattacharyya Gerhard Weikum Michael Stonebraker Hanghang Tong less minus house school lower

9 Tina Eliassi-Rad Koen Smets Jeffrey F. Naughton Beng Chin Ooi Roger Magoulas shrink descend school house depletion

10 Lei Li Disha Makhija Hector Garcia-Molina Jeffrey F. Naughton Tim O’Reilly descend increase love love temperature

6.7 Case Studies
In this experiment, we conduct two case studies to study the effectiveness of the resistance distance

related metrics. Recall that the resistance distance 𝑟 (𝑠, 𝑡) measures the similarity between 𝑡 and 𝑠;

the smaller 𝑟 (𝑠, 𝑡) is, the more similar 𝑠 and 𝑡 are. However, as shown in [54], 𝑟 (𝑠, 𝑡) ≈ 2𝑚( 1

𝑑𝑠
+ 1

𝑑𝑡
)

on geometric graphs. That is, the resistance distance between two nodes are mainly determined by

their degrees. To fix this issue, the authors in [54] proposed a corrected resistance distance defined

as 𝑟 (𝑠, 𝑡) =
√︃
𝑟 (𝑠, 𝑡) − 1

𝑑𝑠
− 1

𝑑𝑡
− ( 1

𝑑𝑠
− 1

𝑑𝑡
)2. Note that the key to compute such a corrected resistance

distance is to calculate the resistance distance, thus our techniques can be directly used.

We compare the resistance distance (denoted by Res) and the corrected resistance (denoted

by Corrected-Res) with two widely-used similarity measures PageRank [60] and SimRank [22].

In addition, we also include a degree-based metric (denoted by Degree) for comparison which is

defined by
1

𝑑𝑠
+ 1

𝑑𝑡
. We use two real-life datasetsDBLP andWordNet for our case studies. Specifically,

DBLP [1] is a co-authorship network collected from recent 10-year publications (2006-2016) in

the database area. The DBLP dataset contains 37,177 nodes and 131,715 edges.WordNet [2] is an
English word graph parsed from the text of English Wikipedia, where each node is a word and each

edge is a dependency between words. WordNet contains 5,040 nodes and 55,258 edges. We aims to

find the most similar nodes w.r.t. a source node 𝑠 on these datasets. Specifically, we compute the top-

10 nodes with the lowest Res (Corrected-Res and Degree) values as well as the highest PageRank
(SimRank) values. The results are shown in Tabel 3. As expected, for PageRank and SimRank the

top-10 similar users of "Leman Akoglu" are all authors that have a close relationship with "Leman

Akoglu" (who has co-authored more than one paper with him). Most of the top-10 results of Res,
however, are well-known researchers in the database area, indicating that the resistance distance

metric tends to be a global measure of importance. Moreover, we can see that the results of Res
and Degree are very similar, which is consistent with the theoretical analysis in [54]. Interestingly,

for the corrected resistance distance, the top-10 results are highly similar to "Leman Akoglu" and

its performance is comparable with those of PageRank and SimRank. These results show the high

effectiveness of such a corrected resistance distance for measuring similarity on graphs. We can

observe similar results onWordNet. To answer a query “decrease", both PageRank and SimRank
return words that have similar meanings w.r.t. “decrease". The results of Res are all commonly-used

words, which further demonstrate the global property of the resistance distance metric. Likewise,

for corrected resistance distance, the results are very similar to the query word “decrease" and are

also comparable with the results of both PageRank and SimRank. These results further confirm
the effectiveness of the corrected resistance distance.

In summary, our case studies show that the original resistance distance may not be suitable for

measuring the similarities of the nodes in graph. However, a slight correction of the resistance

distance can be a very good similarity measure. These results confirm the theoretical analysis

shown in [54]. In addition, the corrected resistance distance is a distance metric which can be

directly used for many downstream machine learning applications [54], thus we believe that our

techniques can be very useful for those applications. Both the PageRank and SimRank, however,

are not a distance metric, thus may limit their use in machine learning applications.
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7 RELATEDWORK

Resistance distance computation. There is a large number of studies on the properties of

the resistance distance [8, 11, 14, 53, 55]. Previous studies have already revealed the connection

between resistance distance and the commute time of the random walk on graphs [11, 53]. The

connection with random spanning trees has also revealed previously [36]. Our new theoretical

results substantially generalize these connections and bring new insights into the research of

resistance distance. The computation of resistance distance is also studied in theoretical points of

view [37, 38, 52]. However, most of these algorithms perform poorly in practice [44]. There exist

several practical algorithms that focus on computing the so-called spanning tree centrality [21, 40],

which is a special case of resistance distance 𝑟 (𝑠, 𝑡) when there is an edge between 𝑠 and 𝑡 . Note

that those algorithms do not work for any single-pair resistance distance computation. Recently,

Peng et al. develop several efficient algorithms to compute the single-pair resistance distance based

on random walk sampling. Compared to their algorithms, our landmark-based algorithms not only

significantly reduce query time, but can also support single-source query.

Personalized PageRank computation. There exist many algorithms for computing personalized

PageRank [4, 5, 7, 10, 16, 24, 32–34, 47, 50, 56, 58, 60, 62, 63]. Among them, [16, 24, 50, 63] are based

on matrix operations which are often expensive for large graphs. Another set of methods are based

on random walk sampling [7, 33, 47] which are also not very efficient to achieve a good estimation

accuracy on large graphs. More efficient algorithms for personalized PageRank computation are

push based deterministic algorithms [4, 5, 10]. Recently, such push based solutions are further

optimized by a bidirectional framework that combines both push algorithms and random walk

sampling [30, 32, 34, 58–60, 62]. Motivated by this bidirectional framework, we also propose a

bidirectional algorithm to compute resistance distance. However, as well discussed in Section 4, it

is quite nontrivial to extend the existing random walk sampling algorithms (push algorithms) to

our new 𝑣-absorbed random walk algorithm (𝑣-absorbed push algorithm).

8 CONCLUSION
In this paper, we study the problem of approximately computing the resistance distance on real-life

network. Based on a novel formula for computing 𝑟 (𝑠, 𝑡), we propose several novel explanations
for resistance distance and also develop several new and efficient algorithms for both single-pair

and single-source resistance distance query problems. Our results establish several interesting

connections among resistance distance, random walk, random spanning trees, and deterministic

push procedure; and bring new and deep insights on efficient resistance distance computations. We

conduct extensive experiments on 5 real-life datasets to evaluate our algorithms. The results show

that for single-pair query, our best algorithm Bipush outperforms the state-of-the-art algorithms

by at least three orders of magnitude in terms of the average error using similar query time. For

single-source query, the proposed online algorithm LEwalk is significantly faster than the baselines

and the proposed index-based method Push* is at least three orders of magnitude faster than the

baselines, with comparable approximation errors (i.e., 𝐿1-error).
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